国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (2): 207-211.doi: 10.7518/gjkq.2016.02.020
潘有条1,王一飞2,赵洵3,曾宪卓3,张贞1,程钧君1,李夏宁1,刘威1,赵红宇4
Pan Youtiao1, Wang Yifei2, Zhao Xun3, Zeng Xianzhuo3, Zhang Zhen1, Cheng Junjun1, Li Xianing1, Liu Wei1, Zhao Hongyu4
摘要: 牙周膜干细胞(PDLSC)在牙周组织缺损修复和维持牙周动态平衡中起关键性的作用,是牙周组织再生修复治疗的基础细胞。在不同微环境作用下,PDLSC的增殖分化特性呈现出较大的差别。牙周膜干细胞龛和炎症等微环境对PDLSC的分化有抑制作用,然而,牙本质微环境及发育期根尖微环境能促进PDLSC的分化。研究不同的微环境对PDLSC功能的影响,一方面有助于深入研究PDLSC的生物学功能,另一方面为PDLSC应用于牙周疾病的再生治疗提供理论依据。本文就不同的微环境对PDLSC分化的抑制和诱导作用研究进展作一综述,并展望PDLSC在牙周缺损再生治疗中的应用前景。
中图分类号:
[1] Kinane DF, Marshall GJ. Periodontal manifestations of systemic disease[J]. Aust Dent J, 2001, 46(1):2-12. [2] Gon?alves PF, Gurgel BC, Pimentel SP, et al. Effect of two different approaches for root decontamination on new cementum formation following guided tissue regeneration: a histomorphometric study in dogs[J]. J Periodont Res, 2006, 41(6):535-540. [3] Venezia E, Goldstein M, Boyan BD, et al. The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis [J]. Crit Rev Oral Biol Med, 2004, 15(6):382-402. [4] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429):149-155. [5] Tobita M, Uysal AC, Ogawa R, et al. Periodontal tissue regeneration with adipose-derived stem cells [J]. Tissue Eng Part A, 2008, 14(6):945-953. [6] Chen YL, Chen PK, Jeng LB, et al. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty[J]. Gene Ther, 2008, 15(22):1469-1477. [7] Li H, Yan F, Lei L, et al. Application of autologous cryopreserved bone marrow mesenchymal stem cells for periodontal regeneration in dogs[J]. Cells Tissues Organs, 2009, 190(2):94-101. [8] Tan Z, Zhao Q, Gong P, et al. Research on promoting promoting periodontal regeneration with human basic fibroblast growth factor-modified bone marrow mesenchymal stromal cell gene therapy[J]. Cytotherapy, 2009, 11(3):317-325. [9] 唐亮, 金岩. 影响牙周膜干细胞功能的重要因素[J]. 实用口腔医学杂志, 2009, 25(5):737-740. Tang L, Jin Y. The important factors influencing the functions of periodontal ligament stem cells[J]. J Pract Stomatol, 2009, 25(5):737-740. [10] Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration[J]. Periodontol 2000, 2006, 40(1):164-172. [11] 张盼盼, 李纾. 牙周组织自身稳定的分子机制研究进展[J]. 国际口腔医学杂志, 2010, 37(3):291-293. Zhang PP, Li S. Research progress on homeostasis of periodontal tissues hi molecular mechanism[J]. Int J Stomatol, 2010, 37(3):291-293. [12] 孙静, 李纾. 牙周膜干细胞巢与牙周组织再生[J].国际口腔医学杂志, 2011, 38(4):460-462. Sun J, Li S. Periodontal ligament stem cell niche and periodontal tissue regeneration[J]. Int J Stomatol, 2011, 38(4):460-462. [13] Pluchino S, Muzio L, Imitola J, et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment[J]. Brain, 2008, 131(Pt 10):2564-2578. [14] Wang Y, Imitola J, Rasmussen S, et al. Paradoxical dysregulation of the neural stem cell pathway sonic hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis[J]. Ann Neurol, 2008, 64(4):417-427. [15] Zenovich AG, Taylor DA. Atherosclerosis as a disease of failed endogenous repair[J]. Front Biosci, 2008, 13:3621-3636. [16] Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer[J]. Annu Rev Cell Dev Biol, 2004, 20:695-723. [17] Yamada S, Tomoeda M, Ozawa Y, et al. PLAP-1/ asporin, a novel negative regulator of periodontal ligament mineralization[J]. J Biol Chem, 2007, 282(32):23070-23080. [18] Tomoeda M, Yamada S, Shirai H, et al. PLAP-1/ asporin inhibits activation of BMP receptor via its leucine-rich repeat motif[J]. Biochem Biophys Res Commun, 2008, 371(2):191-196. [19] 李春雷, 卢昌懿, 李长霞, 等. miR101通过PLAP-1调节牙周膜细胞成骨分化的研究[J]. 牙体牙髓牙周病学杂志, 2014, 24(3):125-129. Li CL, Lu CY, Li CX, et al. miR101 regulates the osteogenic differentiation of periodontal ligament cells via PLAP-1[J]. Chin J Cons Dent, 2014, 24(3):125-129. [20] Yin A, Korzh S, Winata CL, et al. Wnt signaling is required for early development of zebrafish swimbladder[J]. PLoS One, 2011, 6(3):e18431. [21] Wu Y, Zhang Y, Zhang H, et al. p15RS attenuates Wnt/β-catenin signaling by disruptingβ-catenin TCF4 interaction[J]. J Biol Chem, 2010, 285(45):34621-34631. [22] David MD, Cantí C, Herreros J. Wnt-3a and Wnt-3 differently stimulate proliferation and neurogenesis of spinal neural precursors and promote neurite outgrowth by canonical signaling[J]. J Neurosci Res, 2010, 88(14):3011-3023. [23] Liu G, Vijayakumar S, Grumolato L, et al. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells[J]. J Cell Biol, 2009, 185(1):67-75. [24] Liu N, Shi S, Deng M, et al. High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway[J]. J Bone Miner Res, 2011, 26(9):2082-2095. [25] 刘一涵, 赵喜聪, 张勇杰, 等. 不同诱导环境对牙周膜干细胞膜片生物学特性的影响[J]. 实用口腔医学杂志, 2012, 28(3):279-284. Liu YH, Zhao XC, Zhang YJ, et al. Effects of different induction systems on periodontal ligament stem cell sheets[J]. J Pract Stomatol, 2012, 28(3):279-284. [26] Zeichner-David M. Regeneration of periodontal tissues: cementogenesis revisited[J]. Periodontol 2000, 2006, 41:196-217. [27] 蒋玉姣, 曹灵, 俞艳, 等. 牙本质非胶原蛋白对人牙髓干细胞增殖活性及矿化能力的影响[J]. 口腔生物医学杂志, 2013, 4(1):15-18. Jiang YJ, Cao L, Yu Y, et al. Effects of dentin noncollagenous proteins on the proliferation and mineralization of human dental pulp stem cells[J]. Oral Biomed, 2013, 4(1):15-18. [28] Ma ZF, Li S, Song Y, et al. The biological effect of dentin noncollagenous proteins(DNCPs) on the human periodontal ligament stem cells(HPDLSC) in vitro and in vivo[J]. Tissue Eng Part A, 2008, 14(12):2059-2068. [29] Xu L, Tang L, Jin F, et al. The apical region of developing tooth root constitutes a complex and maintains the ability to generate root and periodontiumlike tissues[J]. J Periodont Res, 2009, 44(2):275-282. [30] Yang ZH, Zhang XJ, Dang NN, et al. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues[J]. J Periodont Res, 2009, 44(2):199-210. [31] 束丽红, 曹灵, 闫明, 等. 不同发育阶段的人牙周膜干细胞增殖能力和成牙/成骨能力的比较研究[J].口腔生物医学, 2013, 4(2):65-69. Shu LH, Cao L, Yan M, et al. Study on the proliferation and osteo/odongenic differentiation of human periodontal ligament stem cells in different developing stages[J]. Oral Biomed, 2013, 4(2):65-69. [32] Ohshima H, Nakasone N, Hashimoto E, et al. The eternal tooth germ is formed at the apical end of continuously growing teeth[J]. Arch Oral Biol, 2005, 50(2):153-157. [33] Zhou Y, Li Y, Mao L, et al. Periodontal healing by periodontal ligament cell sheets in a teeth replantation model[J]. Arch Oral Biol, 2012, 57(2):169-176. [34] Foster BL, Popowics TE, Fong HK, et al. Advances in defining regulators of cementum development and periodontal regeneration[J]. Curr Top Dev Biol, 2007, 78(1):47-126. (本文采编 王晴) |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[3] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[4] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[5] | 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717. |
[6] | 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580. |
[7] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[8] | 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478. |
[9] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[10] | 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250. |
[11] | 杨梦瑶,高现灵,邓淑丽. 静电纺丝纳米纤维在牙周再生中的应用[J]. 国际口腔医学杂志, 2023, 50(1): 10-18. |
[12] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[13] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[14] | 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36. |
[15] | 罗婉逸,韩居熺,周学东,彭显,郑欣. 具核梭杆菌促进结直肠癌发生发展机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 52-60. |
|