Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (4): 488-492.doi: 10.7518/gjkq.2017.04.023

• Reviews • Previous Articles     Next Articles

Role and mechanism of the calcitonin gene related peptide in bone tissue regeneration

Wu Caijuan, Yang Lan, Guo Lühua   

  1. Stomatological School of Guangzhou Medical University, Dept. of Prosthodontics, Affiliated Hospital of Stomatology, Guangzhou 510140, China
  • Received:2016-08-20 Revised:2017-04-14 Online:2017-07-01 Published:2017-07-01
  • Supported by:
    This study was supported by Science and Technology Planning Project of Guangdong Province(2013B021800278) and Science and Technology Planning Project of Guangzhou Liwan District of Guangdong Province(20141216055).

Abstract: Insufficient bone mass is a common problem in oral implant prostheses. The widely used bone regeneration methods in clinical applications include autologous bone grafting and the use of biological bone powder and platelet-rich fiber membrane. Despite the variations in all the methods, the clinical effects are unremarkable. Bones involve a dynamic organization mediated by osteoclast and osteoblast metabolism, which is influenced by various systemic factors. Calcitonin gene related peptides(CGRP) are extensively distributed neuropeptides in the body. Many studies have shown that CGRP plays an important role in bone metabolism, especially in osteogenesis. However, the specific mechanism of CGRP in osteogenesis is unclear and requires further investigation and discussion. Therefore, we conducted this review to study the role and mechanism of CGRP.

Key words: calcitonin gene related peptide, bone regeneration, osteogenic differentiation

CLC Number: 

  • R68

TrendMD: 
[1] Lv S, Liu H, Cui J, et al. Histochemical examination of cathepsin K, MMP1 and MMP2 in compressed periodontal ligament during orthodontic tooth move-ment in periostin deficient mice[J]. J Mol Histol, 2014, 45(3):303-309.
[2] Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions [J]. BMC Med, 2011, 9:66.
[3] Giannoudis PV, Einhorn TA. Bone morphogenetic proteins in musculoskeletal medicine[J]. Injury, 2009, 40(Suppl 3):S1-S3.
[4] Ivanovski S, Vaquette C, Gronthos S, et al. Multi-phasic scaffolds for periodontal tissue engineering [J]. J Dent Res, 2014, 93(12):1212-1221.
[5] Magan A, Ripamonti U. Biological aspects of perio-dontal tissue regeneration: cementogenesis and the induction of Sharpey’s fibres[J]. SADJ, 2013, 68(7): 304-306, 308-312, 314.
[6] Sun J, Zhang T, Zhang P, et al. Overexpression of the PLAP-1 gene inhibits the differentiation of BMSCs into osteoblast-like cells[J]. J Mol Histol, 2014, 45(5):599-608.
[7] 郑林丰, 谢应桂, 许愿忠. 降钙素基因相关肽在神经系统损伤中的作用[J]. 创伤外科杂志, 2006, 8 (6):571-573.
Zheng LF, Xie YG, Xu YZ. Effects of calcitonin gene-related peptide on nerve system injury[J]. J Traumat Surg, 2006, 8(6):571-573.
[8] Martin CD, Jimenez-Andrade JM, Ghilardi JR, et al. Organization of a unique net-like meshwork of CGRP + sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain[J]. Neurosci Lett, 2007, 427(3): 148-152.
[9] Wang L, Shi X, Zhao R, et al. Calcitonin-gene-rela-ted peptide stimulates stromal cell osteogenic diffe-rentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption[J]. Bone, 2010, 46(5):1369-1379.
[10] Lv L, Wang Y, Zhang J, et al. Healing of periodontal defects and calcitonin gene related peptide expre-ssion following inferior alveolar nerve transection in rats[J]. J Mol Histol, 2014, 45(3):311-320.
[11] Lv S, Li J, Feng W, et al. Expression of HMGB1 in the periodontal tissue subjected to orthodontic force application by Waldo’s method in mice[J]. J Mol Histol, 2015, 46(1):107-114.
[12] Li J, Kreicbergs A, Bergström J, et al. Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: A study in rat angulated tibia[J]. J Orthop Res, 2007, 25(9):1204- 1212.
[13] Wu Y, Jing D, Ouyang H, et al. Pre-implanted sensory nerve could enhance the neurotization in tissue-engineered bone graft[J]. Tissue Eng Part A, 2015, 21(15/16):2241-2249.
[14] Sample SJ, Hao Z, Wilson AP, et al. Role of calci-tonin gene-related peptide in bone repair after cyclic fatigue loading[J]. PLoS One, 2011, 6(6):e20386.
[15] 马文辉, 时述山, 李亚非, 等. 神经肽对人成骨细胞生物学影响机理的研究[J]. 中国矫形外科杂志, 2001, 8(11):1091-1095.
Ma WH, Shi SS, Li YF, et al. Mechanism of the effects of neuropeptides to the main biological action of normal osteoblnst of people[J]. Orthop J Chin, 2001, 8(11):1091-1095.
[16] Lerner UH. Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone[J]. J Musculoskelet Neuronal In-teract, 2006, 6(1):87-95.
[17] Ma W, Zhang X, Shi S, et al. Neuropeptides stimu-late human osteoblast activity and promote gap junc-tional intercellular communication[J]. Neurope-ptides, 2013, 47(3):179-186.
[18] Qi T, Hay DL. Structure-function relationships of the N-terminus of receptor activity-modifying pro-teins[J]. Br J Pharmacol, 2010, 159(5):1059-1068.
[19] Zhang Z, Dickerson IM, Russo AF. Calcitonin gene-related peptide receptor activation by receptor ac-tivity-modifying protein-1 gene transfer to vascular smooth muscle cells[J]. Endocrinology, 2006, 147 (4):1932-1940.
[20] Tian G, Zhang G, Tan YH. Calcitonin gene-related peptide stimulates BMP-2 expression and the dif-ferentiation of human osteoblast-like cells in vitro [J]. Acta Pharmacol Sin, 2013, 34(11):1467-1474.
[21] Fang Z, Yang Q, Xiong W, et al. Effect of CGRP-adenoviral vector transduction on the osteoblastic differentiation of rat adipose-derived stem cells[J]. PLoS One, 2013, 8(8):e72738.
[22] Bischoff DS, Zhu JH, Makhijani NS, et al. Angio-genic CXC chemokine expression during differen-tiation of human mesenchymal stem cells towards the osteoblastic lineage[J]. J Cell Biochem, 2008, 103(3):812-824.
[23] Suzuki A, Uemura T, Nakamura H. Control of bone remodeling by nervous system. Neural involvement in fracture healing and bone regeneration[J]. Clin Calcium, 2010, 20(12):1820-1827.
[24] Xu J, Kauther MD, Hartl J, et al. Effects of alpha-calcitonin gene-related peptide on osteoprotegerin and receptor activator of nuclear factor-κB ligand expression in MG-63 osteoblast-like cells exposed to polyethylene particles[J]. J Orthop Surg Res, 2010, 5:83.
[25] Kanczler JM, Oreffo RO. Osteogenesis and angio-genesis: the potential for engineering bone[J]. Eur Cell Mater, 2008, 15:100-114.
[26] 陀泳华, 郭小磊, 张鑫鑫, 等. 降钙素基因相关肽对血管内皮细胞体外血管生成的作用及机制研究[J]. 中华骨科杂志, 2012, 32(8):781-787.
Tuo YH, Guo XL, Zhang XX, et al. Effect of calci-tonin gene-related peptide on angiogenesis of human umbilical vein endothelial cells[J]. Chin J Orthopaed, 2012, 32(8):781-787.
[27] Xiang L, Ma L, Wei N, et al. Effect of lentiviral vec-tor overexpression α-calcitonin gene-related peptide on titanium implant osseointegration in α-CGRP-deficient mice[J]. Bone, 2017, 94:135-140.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[3] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[4] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[5] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[6] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[7] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[8] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[9] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[10] Li Yanfei,Zhang Xinchun. Research progress on the dentin bone repair material [J]. Int J Stomatol, 2022, 49(2): 197-203.
[11] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[12] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[13] Liu Jiacheng,Meng Zhaosong,Li Hongjie,Sui Lei. The role of follistatin in oral and maxillofacial development and its therapeutic application prospect [J]. Int J Stomatol, 2021, 48(5): 556-562.
[14] Zhao Wenjun,Chen Yu. Research progress on periodontal functional gradient membrane for guided tissue/bone regeneration [J]. Int J Stomatol, 2021, 48(4): 391-397.
[15] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .