国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 563-569.doi: 10.7518/gjkq.2021101

• 综述 • 上一篇    下一篇

多相支架在牙周再生领域的研究进展

巩靖蕾(),黄艳梅,王军()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院正畸科 成都 610041
  • 收稿日期:2021-03-06 修回日期:2021-06-06 出版日期:2021-09-01 发布日期:2021-09-10
  • 通讯作者: 王军
  • 作者简介:巩靖蕾,住院医师,硕士,Email: 1768027821@qq.com
  • 基金资助:
    国家自然科学基金(81771114);国家自然科学基金(81970967)

Research progress on multiphasic scaffold in periodontal regeneration

Gong Jinglei(),Huang Yanmei,Wang Jun()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-03-06 Revised:2021-06-06 Online:2021-09-01 Published:2021-09-10
  • Contact: Jun Wang
  • Supported by:
    National Natural Science Foundation of China(81771114);National Natural Science Foundation of China(81970967)

摘要:

牙周炎导致的牙周组织破坏会引起牙齿松动及脱落,危害口腔甚至全身健康。近年来牙周各组织的时空关系及其功能重建已经成为研究前沿,这对传统的牙周组织再生相关技术提出了更高的要求。多相支架作为一种新兴组织工程材料,其区域特异性在重建软硬组织生理特性和功能关系方面均表现出独特的优势,成为牙周再生以及功能整合的关键。本文对近年来多相支架在牙周结构及功能再生领域的研究进展进行综述,关注其与生长因子传递、干细胞技术、现有牙周治疗策略以及新兴材料技术相结合的前沿,进一步指导未来组织工程与口腔医学领域的合作方向。

关键词: 牙周再生, 组织工程, 多相支架, 生长因子, 干细胞

Abstract:

Periodontal tissue damage caused by periodontitis can lead to the mobility and loss of tooth, thereby endangering oral health and even general health. The temporal and spatial relationship of periodontal tissues and their functional reconstruction have become a research frontier, which sets higher demands on traditional therapeutic techniques. As a new type of tissue-engineered materials, multiphasic scaffolds show unique advantages in rebuilding the physiological characteristics and functional relationships of soft and hard tissues, which are keys to periodontal regeneration and functional integration. This article reviews the research progress on multiphase scaffolds in the field of periodontal structure and functional regeneration. It focuses on the frontier of the combination of these scaffolds with growth factor delivery, stem cell technology, existing periodontal treatment strategies, and emerging material technologies. This study serves as a guide for the future integration of tissue engineering and stomatology.

Key words: periodontal regeneration, tissue engineering, multiphasic scaffolds, growth factor, mesenchymal stem cell

中图分类号: 

  • R781.4
[1] Han J, Menicanin D, Gronthos S, et al. Stem cells, tissue engineering and periodontal regeneration[J]. Aust Dent J, 2014, 59:117-130.
doi: 10.1111/adj.2014.59.issue-s1
[2] Park CH. Biomaterial-based approaches for regene-ration of periodontal ligament and cementum using 3D platforms[J]. Int J Mol Sci, 2019, 20(18):4364.
doi: 10.3390/ijms20184364
[3] Ji S, Choi YS, Choi Y. Bacterial invasion and persistence: critical events in the pathogenesis of perio-dontitis[J]. J Periodontal Res, 2015, 50(5):570-585.
doi: 10.1111/jre.12248 pmid: 25487426
[4] Onizuka S, Iwata T. Application of periodontal ligament-derived multipotent mesenchymal stromal cell sheets for periodontal regeneration[J]. Int J Mol Sci, 2019, 20(11):E2796.
[5] 和璐. 牙周炎和代谢综合征[J]. 北京大学学报(医学版), 2011, 43(1):13-17.
He L. Periodontitis and metabolic syndrome[J]. J Pe-king Univ (Heal Sci), 2011, 43(1):13-17.
[6] Sanz M, Ceriello A, Buysschaert M, et al. Scientific evidence on the links between periodontal diseases and diabetes: consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology[J]. J Clin Perio-dontol, 2018, 45(2):138-149.
[7] 王勤涛, 吴织芬. 牙周病与全身系统性疾病间的相互关系[J]. 国外医学口腔医学分册, 2003, 30(2):135-137.
Wang QT, Wu ZF. The relationship between perio-dontal disease and systemic diseases[J]. Foreign Med Sci (Stomatol), 2003, 30(2):135-137.
[8] Kamer AR, Craig RG, Dasanayake AP, et al. Inflammation and Alzheimer’s disease: possible role of pe-riodontal diseases[J]. Alzheimers Dement, 2008, 4(4):242-250.
doi: 10.1016/j.jalz.2007.08.004
[9] Shin YJ, Choung HW, Lee JH, et al. Association of periodontitis with oral cancer: a case-control study[J]. J Dent Res, 2019, 98(5):526-533.
doi: 10.1177/0022034519827565 pmid: 30779879
[10] Li XJ, Kolltveit KM, Tronstad L, et al. Systemic di-seases caused by oral infection[J]. Clin Microbiol Rev, 2000, 13(4):547-558.
doi: 10.1128/CMR.13.4.547 pmid: 11023956
[11] Iheozor-Ejiofor Z, Middleton P, Esposito M, et al. Treating periodontal disease for preventing adverse birth outcomes in pregnant women[J]. Cochrane Database Syst Rev, 2017, 6(6): CD005297.
[12] Jeon JE, Vaquette C, Klein TJ, et al. Perspectives in multiphasic osteochondral tissue engineering[J]. Anat Rec (Hoboken), 2014, 297(1):26-35.
doi: 10.1002/ar.v297.1
[13] Yousefi AM, Hoque ME, Prasad RG, et al. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review[J]. J Biomed Mater Res A, 2015, 103(7):2460-2481.
doi: 10.1002/jbm.v103.7
[14] Park CH, Rios HF, Jin Q, et al. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces[J]. Biomaterials, 2010, 31(23):5945-5952.
doi: 10.1016/j.biomaterials.2010.04.027
[15] Zhu WT, Zhang Q, Zhang Y, et al. PDL regeneration via cell homing in delayed replantation of avulsed teeth[J]. J Transl Med, 2015, 13:357.
doi: 10.1186/s12967-015-0719-2
[16] de Jong T, Bakker AD, Everts V, et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration[J]. J Perio-dontal Res, 2017, 52(6):965-974.
[17] Park CH, Kim KH, Lee YM, et al. 3D printed, microgroove pattern-driven generation of oriented ligamentous architectures[J]. Int J Mol Sci, 2017, 18(9):1927.
doi: 10.3390/ijms18091927
[18] Sowmya S, Mony U, Jayachandran P, et al. Tri-la-yered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone[J]. Adv Healthc Mater, 2017, 6(7). doi: 10.1002/adhm.201601251.
doi: 10.1002/adhm.201601251
[19] Huang RY, Tai WC, Ho MH, et al. Combination of a biomolecule-aided biphasic cryogel scaffold with a barrier membrane adhering PDGF-encapsulated na-nofibers to promote periodontal regeneration[J]. J Periodontal Res, 2020, 55(4):529-538.
doi: 10.1111/jre.v55.4
[20] Lee CH, Hajibandeh J, Suzuki T, et al. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex[J]. Tissue Eng Part A, 2014, 20(7/8):1342-1351.
doi: 10.1089/ten.tea.2013.0386
[21] Ding T, Li J, Zhang X, et al. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex rege-neration[J]. Biomater Sci, 2020, 8(9):2459-2471.
doi: 10.1039/D0BM00102C
[22] Wu C, Zhang Y, Zhou Y, et al. A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteoge-nesis[J]. Acta Biomater, 2011, 7(5):2229-2236.
doi: 10.1016/j.actbio.2010.12.019
[23] Zhang YF, Miron RJ, Li SE, et al. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs[J]. J Clin Periodontol, 2015, 42(3):262-271.
doi: 10.1111/jcpe.12364
[24] Xie Q, Jia LN, Xu HY, et al. Fabrication of core-shell PEI/pBMP2-PLGA electrospun scaffold for gene delivery to periodontal ligament stem cells[J]. Stem Cells Int, 2016, 2016:5385137.
[25] Liu J, Ruan J, Weir MD, et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells[J]. Cells, 2019, 8(6):537.
doi: 10.3390/cells8060537
[26] Wu M, Wang J, Zhang Y, et al. Mineralization induction of gingival fibroblasts and construction of a sandwich tissue-engineered complex for repairing periodontal defects[J]. Med Sci Monit, 2018, 24:1112-1123.
doi: 10.12659/MSM.908791
[27] Requicha JF, Viegas CA, Muñoz F, et al. A tissue engineering approach for periodontal regeneration ba-sed on a biodegradable double-layer scaffold and adi-pose-derived stem cells[J]. Tissue Eng Part A, 2014, 20(17/18):2483-2492.
doi: 10.1089/ten.tea.2013.0360
[28] Chen G, Chen J, Yang B, et al. Combination of alig-ned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration[J]. Biomaterials, 2015, 52:56-70.
doi: 10.1016/j.biomaterials.2015.02.011
[29] Kawecki F, Clafshenkel WP, Fortin M, et al. Biomimetic tissue-engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies[J]. Adv Healthc Mater, 2018, 7(6):e1700919.
[30] Owaki T, Shimizu T, Yamato M, et al. Cell sheet engineering for regenerative medicine: current challenges and strategies[J]. Biotechnol J, 2014, 9(7):904-914.
doi: 10.1002/biot.201300432
[31] Iwata T, Yamato M, Tsuchioka H, et al. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model[J]. Biomate-rials, 2009, 30(14):2716-2723.
[32] Vaquette C, Fan W, Xiao Y, et al. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex[J]. Biomaterials, 2012, 33(22):5560-5573.
doi: 10.1016/j.biomaterials.2012.04.038 pmid: 22575832
[33] Costa PF, Vaquette C, Zhang QY, et al. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure[J]. J Clin Periodontol, 2014, 41(3):283-294.
doi: 10.1111/jcpe.12214
[34] Farias BC, Souza PR, Ferreira B, et al. Occurrence of periodontal pathogens among patients with chro-nic periodontitis[J]. Publ Braz Soc Microbiol, 2012, 43(3):909-916.
[35] Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug deli-very in cancer[J]. Trends Pharmacol Sci, 2009, 30(11):592-599.
doi: 10.1016/j.tips.2009.08.004
[36] Zhang J, Misra RD. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response[J]. Acta Biomater, 2007, 3(6):838-850.
pmid: 17638599
[37] Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58:521-531.
doi: 10.1016/j.msec.2015.08.066
[38] Chen J, Zhou B, Li Q, et al. PLLA-PEG-TCH-labeled bioactive molecule nanofibers for tissue engineering[J]. Int J Nanomedicine, 2011, 6:2533-2542.
[39] Guo Z, Bo D, He P, et al. Sequential controlled-released dual-drug loaded scaffold for guided bone regeneration in a rat fenestration defect model[J]. J Mater Chem B, 2017, 5(37):7701-7710.
doi: 10.1039/C7TB00909G
[40] Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration-a materials perspective[J]. Dent Mater, 2012, 28(7):703-721.
doi: 10.1016/j.dental.2012.04.022 pmid: 22592164
[41] Carlo Reis EC, Borges AP, Araújo MV, et al. Perio-dontal regeneration using a bilayered PLGA/calcium phosphate construct[J]. Biomaterials, 2011, 32(35):9244-9253.
doi: 10.1016/j.biomaterials.2011.08.040
[42] Ma Y, Xie L, Yang B, et al. Three-dimensional prin-ting biotechnology for the regeneration of the tooth and tooth-supporting tissues[J]. Biotechnol Bioeng, 2019, 116(2):452-468.
doi: 10.1002/bit.v116.2
[43] Park CH, Rios HF, Taut AD, et al. Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces[J]. Tissue Eng Part C Methods, 2014, 20(7):533-542.
doi: 10.1089/ten.tec.2013.0619
[44] Pilipchuk SP, Fretwurst T, Yu N, et al. Micropatterned scaffolds with immobilized growth factor genes regenerate bone and periodontal ligament-like tissues[J]. Adv Healthc Mater, 2018, 7(22):e1800750.
[45] Pilipchuk SP, Monje A, Jiao Y, et al. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo[J]. Adv Healthc Mater, 2016, 5(6):676-687.
doi: 10.1002/adhm.201500758
[46] Kim EC, Park J, Kwon IK, et al. Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells[J]. J Periodontal Implant Sci, 2017, 47(5):273-291.
doi: 10.5051/jpis.2017.47.5.273
[47] Dodel M, Hemmati Nejad N, Bahrami SH, et al. Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration[J]. Biologicals, 2017, 46:99-107.
doi: 10.1016/j.biologicals.2017.01.007
[48] Sprio S, Campodoni E, Sandri M, et al. A graded multifunctional hybrid scaffold with superparamagnetic ability for periodontal regeneration[J]. Int J Mol Sci, 2018, 19(11):3604.
doi: 10.3390/ijms19113604
[49] Jang AT, Chen L, Shimotake AR, et al. A force on the crown and tug of war in the periodontal complex[J]. J Dent Res, 2018, 97(3):241-250.
doi: 10.1177/0022034517744556 pmid: 29364757
[50] Kim YT, Park JC, Choi SH, et al. The dynamic hea-ling profile of human periodontal ligament stem cells: histological and immunohistochemical analysis u-sing an ectopic transplantation model[J]. J Periodontal Res, 2012, 47(4):514-524.
doi: 10.1111/j.1600-0765.2011.01463.x pmid: 22308979
[51] Spalazzi JP, Dagher E, Doty SB, et al. In vivo evalua-tion of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration[J]. J Biomed Mater Res A, 2008, 86(1):1-12.
doi: 10.1002/jbm.a.32073 pmid: 18442111
[1] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
[2] 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197.
[3] 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204.
[4] 陈野, 周丰, 邬琼辉, 车会凌, 李佳璇, 申佳琪, 罗恩. 脂联素对骨髓间充质干细胞的作用及其调控机制[J]. 国际口腔医学杂志, 2021, 48(1): 58-63.
[5] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[6] 汪是琦,常雅琴,陈斌,谭葆春,泥艳红. 植骨术与植骨联用屏障膜在牙周再生治疗中临床疗效对比的系统评价与Meta分析[J]. 国际口腔医学杂志, 2020, 47(6): 644-651.
[7] 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668.
[8] 石玉. 骨骼发育中骨骼干细胞的鉴定[J]. 国际口腔医学杂志, 2020, 47(3): 249-256.
[9] 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262.
[10] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[11] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
[12] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[13] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
[14] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[15] 魏中武,黄谢山,陈灼庚. 浓缩生长因子在口腔临床中的应用及研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 235-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈晓 蒋文晖 王文梅. 念珠菌性白斑的研究概况[J]. 国际口腔医学杂志, 2004, 31(02): 138 -140 .
[2] 张雯综述 郑美华审校. 全瓷固定桥抗折性能的研究进展[J]. 国际口腔医学杂志, 2010, 37(4): 481 -484 .
[3] 吴幸晨综述 束陈斌审校. 窝沟封闭术在儿童口腔临床中的应用和防龋效能[J]. 国际口腔医学杂志, 2013, 40(4): 467 -470 .
[4] 贾燕. 桩核冠修复成人个别唇向错位前牙的临床观察[J]. 国际口腔医学杂志, 2013, 40(3): 309 -311 .
[5] 邹慧儒 秦宗长 张兰成. 釉基质蛋白各组成成分及其作用[J]. 国际口腔医学杂志, 2013, 40(3): 355 -358 .
[6] 李雪 封小霞综述 赵志河审校. 微种植钉支抗临床应用中的负面效应[J]. 国际口腔医学杂志, 2013, 40(4): 493 -495 .
[7] 徐远明 樊明文 杨雪超. 间充质干细胞在肿瘤靶向治疗中的应用[J]. 国际口腔医学杂志, 2013, 40(3): 371 -374 .
[8] 吴晓光1 赵旭2综述 李毅1审校. 添加剂对釉质再矿化的影响[J]. 国际口腔医学杂志, 2013, 40(4): 526 -528 .
[9] 陈伯嘉 李娟娟综述 欧国敏审校. 牙种植体颈部软组织附着的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 496 -499 .
[10] 刘敏综述 周力 王艳民审校. 正畸相关牙槽骨缺损现象的研究现状[J]. 国际口腔医学杂志, 2013, 40(4): 500 -502 .