国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (6): 705-710.doi: 10.7518/gjkq.2019104

• 综述 • 上一篇    下一篇

白色念珠菌影响口腔黏膜癌变的机制进展

文书琼,郭君怡,戴文晓,王迪侃,王智()   

  1. 中山大学光华口腔医学院? 附属口腔医院黏膜科 广东省口腔医学重点实验室 广州 510055
  • 收稿日期:2019-02-24 修回日期:2019-05-16 出版日期:2019-11-01 发布日期:2019-11-14
  • 通讯作者: 王智 E-mail:wangzh75@sysu.edu.cn
  • 作者简介:文书琼,博士,Email: wenshq@mail2.sysu.edu.cn
  • 基金资助:
    国家自然科学基金(81772896)

Research progress on the mechanism of Candida albicans in oral carcinogenesis

Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi()   

  1. Guanghua School of Stomatology, Dept. of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2019-02-24 Revised:2019-05-16 Online:2019-11-01 Published:2019-11-14
  • Contact: Zhi Wang E-mail:wangzh75@sysu.edu.cn
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81772896)

摘要:

微生物感染是癌症发生的重要因素,目前,越来越多的研究支持这样的观点:机会性白色念珠菌通过患者的免疫抑制状态,增加患者患癌的概率和肿瘤转移的风险。最近的研究结果表明,白色念珠菌可能通过以下几种机制来促进癌症发生:产生致癌副产物、引发炎症以及诱导辅助性T细胞17反应。本文就白色念珠菌影响口腔黏膜癌变机制的研究进展作一综述,以期能够进一步阐明白色念珠菌和癌症发生之间的关系,有望为预防和治疗口腔黏膜癌变提供新思路。

关键词: 白色念珠菌, 致癌物质, 癌变, 炎症, 辅助性T细胞17免疫反应

Abstract:

Microbial infection is one of the important causes of carcinogenesis. To date, an increasing number of researches have indicated that Candida albicans can increase the patients’ risk of carcinogenesis and tumor metastasis through the immunosuppressive state. Recent studies have demonstrated that Candida albicans promote the carcinogenesis through several mechanisms such as producing carcinogenic byproducts, triggering inflammation and inducing T helper cell 17 response. Here, we provide an overview of the research progress of oncogenic potential of Candida albicans and discuss the relationship between Candida albicans and cancer, trying to provide new ideas for the prevention and treatment of oral cancer.

Key words: Candida albicans, carcinogen, carcinogenesis, inflammation, T helper cell 17 immune response

中图分类号: 

  • R781.5 +4
[1] McManus BA, Coleman DC . Molecular epidemiology, phylogeny and evolution of Candida albicans[J]. Infect Genet Evol, 2014,21:166-178.
[2] Barrett AW, Kingsmill VJ, Speight PM . The frequency of fungal infection in biopsies of oral mucosal lesions[J]. Oral Dis, 1998,4(1):26-31.
[3] Roed-Petersen B, Renstrup G, Pindborg JJ . Candida in oral leukoplakias. A histologic and exfoliative cytologic study[J]. Scand J Dent Res, 1970,78(4):323-328.
[4] O’Grady JF, Reade PC . Candida albicans as a promoter of oral mucosal neoplasia[J]. Carcinogenesis, 1992,13(5):783-786.
[5] 章魁华, 王洪君, 秦锦霞 , 等. 白色念珠菌感染对增生口腔粘膜上皮的影响[J]. 中华口腔医学杂志, 1994,29(6):339-341, 384.
Zhang KH, Wang HJ, Qin JX , et al. Effect of candidal infection on the hyperplastic oral epithelium[J]. Chin J Stomatol, 1994,29(6):339-341, 384.
[6] Naglik JR, König A, Hube B , et al. Candida albicans-epithelial interactions and induction of mucosal innate immunity[J]. Curr Opin Microbiol, 2017,40:104-112.
[7] Ho J, Yang X, Nikou SA , et al. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor[J]. Nat Commun, 2019,10(1):2297.
[8] Filler SG . Candida-host cell receptor-ligand interactions[J]. Curr Opin Microbiol, 2006,9(4):333-339.
[9] Wächtler B, Citiulo F, Jablonowski N , et al. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process[J]. PLoS One, 2012,7(5):e36952.
[10] Allert S, Förster TM, Svensson CM , et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers[J]. MBio, 2018,9(3):e00915-e00918.
[11] Naglik JR, Moyes DL, Wächtler B , et al. Candida albicans interactions with epithelial cells and mucosal immunity[J]. Microbes Infect, 2011,13(12/13):963-976.
[12] Hornbach A, Heyken A, Schild L , et al. The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils[J]. Infect Immun, 2009,77(12):5216-5224.
[13] Furlaneto MC, Favero D, França EJ , et al. Effects of human blood red cells on the haemolytic capability of clinical isolates of Candida tropicalis[J]. J Biomed Sci, 2015,22:13.
[14] Tao L, Du H, Guan G , et al. Discovery of a “white-gray-opaque” tristable phenotypic switching system in Candida albicans: roles of non-genetic diversity in host adaptation[J]. PLoS Biol, 2014,12(4):e1001830.
[15] Zhu W, Filler SG . Interactions of Candida albicans with epithelial cells[J]. Cell Microbiol, 2010,12(3):273-282.
[16] Noble SM, Gianetti BA, Witchley JN . Candida albicans cell-type switching and functional plasticity in the mammalian host[J]. Nat Rev Microbiol, 2017,15(2):96-108.
[17] Krogh P . The role of yeasts in oral cancer by means of endogenous nitrosation[J]. Acta Odontol Scand, 1990,48(1):85-88.
[18] Sanjaya PR, Gokul S, Gururaj Patil B , et al. Candida in oral pre-cancer and oral cancer[J]. Med Hypotheses, 2011,77(6):1125-1128.
[19] Seitz HK, Cho CH . Contribution of alcohol and tobacco use in gastrointestinal cancer development[J]. Methods Mol Biol, 2009,472:217-241.
[20] Seitz HK, Stickel F . Molecular mechanisms of alcohol-mediated carcinogenesis[J]. Nat Rev Cancer, 2007,7(8):599-612.
[21] Hooper SJ, Wilson MJ, Crean SJ . Exploring the link between microorganisms and oral cancer: a systematic review of the literature[J]. Head Neck, 2009,31(9):1228-1239.
[22] Tsai ST, Wong TY, Ou CY , et al. The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer[J]. Int J Cancer, 2014,135(10):2424-2436.
[23] Alnuaimi AD, Ramdzan AN, Wiesenfeld D , et al. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects[J]. Oral Dis, 2016,22(8):805-814.
[24] Bakri MM, Rich AM, Cannon RD , et al. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism[J]. Mol Oral Microbiol, 2015,30(1):27-38.
[25] Elinav E, Nowarski R, Thaiss CA , et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms[J]. Nat Rev Cancer, 2013,13(11):759-771.
[26] Garrett WS . Cancer and the microbiota[J]. Science, 2015,348(6230):80-86.
[27] Brennan CA, Garrett WS . Gut microbiota, inflammation, and colorectal cancer[J]. Annu Rev Microbiol, 2016,70:395-411.
[28] Sun Y, Liu N, Guan X , et al. Immunosuppression induced by chronic inflammation and the progression to oral squamous cell carcinoma[J]. Mediators Inflamm, 2016,2016:5715719.
[29] Nasry WHS, Rodriguez-Lecompte JC, Martin CK . Role of COX-2/PGE2 mediated inflammation in oral squamous cell carcinoma[J]. Cancers (Basel), 2018,10(10):E348.
[30] Sonis ST, Amaral Mendes R . Could the PI3K canonical pathway be a common link between chronic inflammatory conditions and oral carcinogenesis[J]. J Oral Pathol Med, 2016,45(7):469-474.
[31] Mantovani A, Allavena P, Sica A , et al. Cancer-related inflammation[J]. Nature, 2008,454(7203):436-444.
[32] Netea MG, Sutmuller R, Hermann C , et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells[J]. J Immunol, 2004,172(6):3712-3718.
[33] Drummond RA, Franco LM, Lionakis MS . Human CARD9: a critical molecule of fungal immune surveillance[J]. Front Immunol, 2018,9:1836.
[34] Terayama Y, Matsuura T, Ozaki K . Lack of correlation between aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 protein expression and promoter methylation in squamous cell carcinoma accompanying Candida albicans-induced inflammation[J]. PLoS One, 2016,11(7):e0159090.
[35] Feller L, Khammissa RA, Chandran R , et al. Oral candidosis in relation to oral immunity[J]. J Oral Pathol Med, 2014,43(8):563-569.
[36] Richardson JP, Moyes DL . Adaptive immune responses to Candida albicans infection[J]. Virulence, 2015,6(4):327-337.
[37] Netea MG, Joosten LA, van der Meer JW, et al. Immune defence against Candida fungal infections[J]. Nat Rev Immunol, 2015,15(10):630-642.
[38] Becker KL, Ifrim DC, Quintin J , et al. Antifungal innate immunity: recognition and inflammatory networks[J]. Semin Immunopathol, 2015,37(2):107-116.
[39] Tang J, Lin G, Langdon WY , et al. Regulation of C- type lectin receptor-mediated antifungal immunity[J]. Front Immunol, 2018,9:123.
[40] Dennehy KM, Willment JA, Williams DL , et al. Reciprocal regulation of IL-23 and IL-12 following co- activation of Dectin-1 and TLR signaling pathways[J]. Eur J Immunol, 2009,39(5):1379-1386.
[41] Rodríguez M, Márquez S, de la Rosa JV, et al. Fungal pattern receptors down-regulate the inflammatory response by a cross-inhibitory mechanism independent of interleukin-10 production[J]. Immunology, 2017,150(2):184-198.
[42] Mengesha BG, Conti HR . The role of IL-17 in protection against mucosal Candida infections[J]. J Fungi (Basel), 2017,3(4):E52.
[43] Kirchner FR, Littringer K, Altmeier S , et al. Persistence of Candida albicans in the oral mucosa induces a curbed inflammatory host response that is independent of immunosuppression[J]. Front Immunol, 2019,10:330.
[44] Amatya N, Garg AV, Gaffen SL . IL-17 signaling: the yin and the yang[J]. Trends Immunol, 2017,38(5):310-322.
[45] Martínez-López M, Iborra S, Conde-Garrosa R , et al. Microbiota sensing by mincle-syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity[J]. Immunity, 2019,50(2): 446-461.e9.
[46] Uribe-Querol E, Rosales C . Neutrophils in cancer: two sides of the same coin[J]. J Immunol Res, 2015,2015:983698.
[47] Magalhaes MA, Glogauer JE, Glogauer M . Neutrophils and oral squamous cell carcinoma: lessons learned and future directions[J]. J Leukoc Biol, 2014,96(5):695-702.
[48] Langowski JL, Zhang X, Wu L , et al. IL-23 promotes tumour incidence and growth[J]. Nature, 2006,442(7101):461-465.
[1] 董云梅,陶艳,周瑜. 口腔黏膜癌变过程中血清生化标志物的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 43-50.
[2] 杜倩,任彪,周学东,徐欣. 根面龋微生态的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 326-332.
[3] 郝一龙,周瑜,陈谦明. 正中菱形舌炎发病危险因素的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 333-338.
[4] 吕慧欣,杜留熠,王鹞,于维先,任静宜,顾芯铭,周延民. 炎症小体在牙周炎中的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 186-190.
[5] 王鹞,吕慧欣,杜留熠,顾芯铭,任静宜,于维先,周延民. 软脑膜在外周炎症影响神经炎症过程中的作用[J]. 国际口腔医学杂志, 2019, 46(2): 223-227.
[6] 李群,关为群,张杨安,黄志超. 骨膜蛋白和p53在口腔白斑及鳞状细胞癌组织中的表达及意义[J]. 国际口腔医学杂志, 2019, 46(1): 5-11.
[7] 詹烨明, 张明珠. 药物性牙龈增生与细胞增殖和凋亡相关性的研究进展[J]. 国际口腔医学杂志, 2018, 45(2): 199-203.
[8] 何林林, 杨卓, 刘程程, 丁一. 牙周微生物与代谢综合征关系的研究进展[J]. 国际口腔医学杂志, 2017, 44(6): 642-646.
[9] 李琳, 王丹, 赵曼竹, 唐明. 慢性牙周炎与神经退行性疾病相关性的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 514-518.
[10] 耿奉雪,潘亚萍. 微小RNA-203的生物学功能及其在口腔疾病中的作用[J]. 国际口腔医学杂志, 2016, 43(6): 685-689.
[11] 任静宜1 刘歆婵1 丁烨1 于洪强1 周延民1 于维先2. 细胞自噬和炎症反应的相互调控与牙周炎[J]. 国际口腔医学杂志, 2016, 43(4): 462-467.
[12] 丁烨,任静宜,于洪强,周延民,于维先. 病原相关分子模式和损伤相关分子模式在免疫炎症反应中的作用[J]. 国际口腔医学杂志, 2016, 43(2): 172-176.
[13] 吴冷 王骏 赵蕾 吴亚菲. 核苷酸结合寡聚化结构域样受体热蛋白结构域亚家族成员3炎症小体的活化调节与牙周疾病的关系[J]. 国际口腔医学杂志, 2015, 42(6): 710-714.
[14] 刘梦余 叶玲 汪成林. 白细胞介素-17及其在口腔疾病中的作用[J]. 国际口腔医学杂志, 2015, 42(6): 728-732.
[15] 汤艳杰,石晶,武云霞. 消化道多发性息肉综合征的病理机制和表现及治疗[J]. 国际口腔医学杂志, 2015, 42(5): 597-599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[9] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 沈末伦,华成舸. 上皮间质转化及其调控基因Twist在肿瘤侵袭转移中的作用[J]. 国际口腔医学杂志, 2008, 35(S1): .