国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (1): 55-58.doi: 10.7518/gjkq.2018.01.011

• 综述 • 上一篇    下一篇

牙龈干细胞生物学潜能的研究进展

刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民   

  1. 吉林大学口腔医院种植科,吉林省牙发育及颌骨重塑与再生重点实验室 长春 130021
  • 收稿日期:2017-05-28 修回日期:2017-09-14 发布日期:2018-01-15
  • 通讯作者: 周延民,教授,博士,Email:zhouym@jlu.edu.cn
  • 作者简介:刘珍珍,住院医师,硕士,Email:lzz423@163.com
  • 基金资助:
    高等学校博士学科点专项科研基金(20120061110077); 国家自然科学基金(81200809); 吉林省教育厅“十二五”科学技术研究项目(吉教科合字[2015]第532号); 吉林大学研究生创新基金资助项目(2017014,2017063)

A review on recent developments in pluripotency of gingiva-derived mesenchymal stem cells

Liu Zhenzhen, Fang Jiao, Zhao Jinghui, Zou Jingting, Xiang Xingchen, Wang Jia, Zhou Yanmin   

  1. Dept. of Implantology, Hospital of Stomatology, Jilin University Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China; Dept. of Implantology, Hospital of Stomatology, Jilin UniversityJilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2017-05-28 Revised:2017-09-14 Published:2018-01-15
  • Supported by:
    This study was supported by Specialized Research Fund for the Doctoral Program of Higher Education of China (20120061110077), National Natural Science Foundation of China (81200809), Science and Technology Research Project of Jilin Provincial Education Department in 12th Five-Year ([2015]532) and Project Supported by Graduate Innovation Fund of Jilin University (2017014, 2017063).

摘要: 间充质干细胞(MSC)可从多种人体组织中分离获得,具有自我更新和多向分化的潜能。目前已证实,牙龈组织中也存在MSC,即牙龈干细胞(GMSC)。GMSC易于分离获得,表型稳定,增殖速度快,体外长期培养时还能维持正常的核型和端粒酶活性,日益成为组织工程和再生医学研究的干细胞来源。本文就其分离鉴定、生物学特性、分化能力等方面的研究进展作一综述。

关键词: 间充质干细胞, 牙龈干细胞, 分化, 组织再生

Abstract: Mesenchymal stem cells (MSCs) which can be isolated from multiple tissue, have two specific characteristics: self-renewal and multi- or pluripotency. Recent evidence has shown that MSCs also located in gingiva, then be named as gingiva-derived mesenchymal stem cells (GMSCs). GMSCs represent a unique population of MSCs that can be easily isolated and obtained. In addition to maintaining a normal karyotype and telomerase activity in long-term cultures, GMSCs can display a stable phenotype and rapidly proliferate in vitro. Therefore, GMSCs are increasingly become the sources of stem cells for tissue engineering and regenerative medicine research. This review described the research progress of GMSCs’ separation and identification, biological characteristics and differentiation ability and so on.

Key words: mesenchymal stem cells, gingiva-derived mesenchymal stem cells, differentiation, tissue regeneration

中图分类号: 

  • Q2
[1]Boink MA, van den Broek LJ, Roffel S, et al. Diffe-rent wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells[J]. Wound Repair Regen, 2016, 24(1):100-109.
[2]Abuzakouk M, Feighery C, O’Farrelly C. Collagenase and dispase enzymes disrupt lymphocyte surface molecules[J]. J Immunol Methods, 1996, 194(2): 211-216.
[3]Tomar GB, Srivastava RK, Gupta N, et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine[J]. Biochem Biophys Res Commun, 2010, 393(3):377-383.
[4]Jin SH, Lee JE, Yun JH, et al. Isolation and charac-terization of human mesenchymal stem cells from gingival connective tissue[J]. J Periodontal Res, 2015, 50(4):461-467.
[5]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stro-mal cells. The International Society for Cellular The-rapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[6]Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immuno-modulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis[J]. J Immunol, 2009, 183(12):7787-7798.
[7]Wada N, Gronthos S, Bartold PM. Immunomodula-tory effects of stem cells[J]. Periodontol 2000, 2013, 63(1):198-216.
[8]Xu X, Chen C, Akiyama K, et al. Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells[J]. J Dent Res, 2013, 92(9):825-832.
[9]Wang F, Yu M, Yan X, et al. Gingiva-derived mesen-chymal stem cell-mediated therapeutic approach for bone tissue regeneration[J]. Stem Cells Dev, 2011, 20(12):2093-2102.
[10]Ge S, Mrozik KM, Menicanin D, et al. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: potential use for clinical therapy[J]. Regen Med, 2012, 7(6): 819-832.
[11]Moshaverinia A, Xu X, Chen C, et al. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration [J]. Biomaterials, 2014, 35(9):2642-2650.
[12]Ansari S, Chen C, Xu X, et al. Muscle tissue enginee-ring using gingival mesenchymal stem cells encapsu-lated in alginate hydrogels containing multiple growth factors[J]. Ann Biomed Eng, 2016, 44(6):1908-1920.
[13]Fawzy El-Sayed KM, Paris S, Becker ST, et al. Perio-dontal regeneration employing gingival margin-deri-ved stem/progenitor cells: an animal study[J]. J Clin Periodontol, 2012, 39(9):861-870.
[14]Chavez-Munoz C, Nguyen KT, Xu W, et al. Transdi-fferentiation of adipose-derived stem cells into kera-tinocyte-like cells: engineering a stratified epidermis [J]. PLoS One, 2013, 8(12):e80587.
[15]Mahdavishahri N, Moghatam Matin M, Fereidoni M, et al. In vitro assay of human gingival scaffold in differentiation of rat’s bone marrow mesenchymal stem cells to keratinocystes[J]. Iran J Basic Med Sci, 2012, 15(6):1185-1190.
[16]Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing[J]. Stem Cells, 2010, 28(10):1856-1868.
[17]Su WR, Zhang QZ, Shi SH, et al. Human gingiva-derived mesenchymal stromal cells attenuate contact hypersensitivity via prostaglandin E2-dependent mechanisms[J]. Stem Cells, 2011, 29(11):1849-1860.
[18]Chen M, Su W, Lin X, et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppres-sion of Th1 and Th17 cells and enhancement of re-gulatory T cell differentiation[J]. Arthritis Rheum, 2013, 65(5):1181-1193.
[19]Yang H, Gao LN, An Y, et al. Comparison of mesen-chymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions [J]. Biomaterials, 2013, 34(29):7033-7047.
[20]Li N, Liu N, Zhou J, et al. Inflammatory environment induces gingival tissue-specific mesenchymal stem cells to differentiate towards a pro-fibrotic pheno-type[J]. Biol Cell, 2013, 105(6):261-275.
[21]Van Pham P, Tran NY, Phan NL, et al. Vitamin C sti-mulates human gingival stem cell proliferation and expression of pluripotent markers[J]. In Vitro Cell Dev Biol Anim, 2016, 52(2):218-227.
[22]Coimbra LS, Steffens JP, Alsadun S, et al. Clopidogrel enhances mesenchymal stem cell proliferation follo-wing periodontitis[J]. J Dent Res, 2015, 94(12):1691-1697.
[23]Jiang CM, Liu J, Zhao JY, et al. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells[J]. J Dent Res, 2015, 94(1):69-77.
[24]Lee SI, Yeo SI, Kim BB, et al. Formation of size-controllable spheroids using gingiva-derived stem cells and concave microwells: morphology and via-bility tests[J]. Biomed Rep, 2016, 4(1):97-101.
[1] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[2] 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602.
[3] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[4] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[5] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[6] 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42.
[7] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[8] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[9] 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419.
[10] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[11] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[12] 熊梦琳,吴龙,马丽,赵今. 转化生长因子-β2促进牙髓干细胞增殖和分化的作用研究[J]. 国际口腔医学杂志, 2021, 48(6): 635-639.
[13] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[14] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[15] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .