国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (1): 55-58.doi: 10.7518/gjkq.2018.01.011

• 综述 • 上一篇    下一篇

牙龈干细胞生物学潜能的研究进展

刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民   

  1. 吉林大学口腔医院种植科,吉林省牙发育及颌骨重塑与再生重点实验室 长春 130021
  • 收稿日期:2017-05-28 修回日期:2017-09-14 发布日期:2018-01-15
  • 通讯作者: 周延民,教授,博士,Email:zhouym@jlu.edu.cn
  • 作者简介:刘珍珍,住院医师,硕士,Email:lzz423@163.com
  • 基金资助:
    高等学校博士学科点专项科研基金(20120061110077); 国家自然科学基金(81200809); 吉林省教育厅“十二五”科学技术研究项目(吉教科合字[2015]第532号); 吉林大学研究生创新基金资助项目(2017014,2017063)

A review on recent developments in pluripotency of gingiva-derived mesenchymal stem cells

Liu Zhenzhen, Fang Jiao, Zhao Jinghui, Zou Jingting, Xiang Xingchen, Wang Jia, Zhou Yanmin   

  1. Dept. of Implantology, Hospital of Stomatology, Jilin University Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China; Dept. of Implantology, Hospital of Stomatology, Jilin UniversityJilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2017-05-28 Revised:2017-09-14 Published:2018-01-15
  • Supported by:
    This study was supported by Specialized Research Fund for the Doctoral Program of Higher Education of China (20120061110077), National Natural Science Foundation of China (81200809), Science and Technology Research Project of Jilin Provincial Education Department in 12th Five-Year ([2015]532) and Project Supported by Graduate Innovation Fund of Jilin University (2017014, 2017063).

摘要: 间充质干细胞(MSC)可从多种人体组织中分离获得,具有自我更新和多向分化的潜能。目前已证实,牙龈组织中也存在MSC,即牙龈干细胞(GMSC)。GMSC易于分离获得,表型稳定,增殖速度快,体外长期培养时还能维持正常的核型和端粒酶活性,日益成为组织工程和再生医学研究的干细胞来源。本文就其分离鉴定、生物学特性、分化能力等方面的研究进展作一综述。

关键词: 间充质干细胞, 牙龈干细胞, 分化, 组织再生

Abstract: Mesenchymal stem cells (MSCs) which can be isolated from multiple tissue, have two specific characteristics: self-renewal and multi- or pluripotency. Recent evidence has shown that MSCs also located in gingiva, then be named as gingiva-derived mesenchymal stem cells (GMSCs). GMSCs represent a unique population of MSCs that can be easily isolated and obtained. In addition to maintaining a normal karyotype and telomerase activity in long-term cultures, GMSCs can display a stable phenotype and rapidly proliferate in vitro. Therefore, GMSCs are increasingly become the sources of stem cells for tissue engineering and regenerative medicine research. This review described the research progress of GMSCs’ separation and identification, biological characteristics and differentiation ability and so on.

Key words: mesenchymal stem cells, gingiva-derived mesenchymal stem cells, differentiation, tissue regeneration

中图分类号: 

  • Q2
[1]Boink MA, van den Broek LJ, Roffel S, et al. Diffe-rent wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells[J]. Wound Repair Regen, 2016, 24(1):100-109.
[2]Abuzakouk M, Feighery C, O’Farrelly C. Collagenase and dispase enzymes disrupt lymphocyte surface molecules[J]. J Immunol Methods, 1996, 194(2): 211-216.
[3]Tomar GB, Srivastava RK, Gupta N, et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine[J]. Biochem Biophys Res Commun, 2010, 393(3):377-383.
[4]Jin SH, Lee JE, Yun JH, et al. Isolation and charac-terization of human mesenchymal stem cells from gingival connective tissue[J]. J Periodontal Res, 2015, 50(4):461-467.
[5]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stro-mal cells. The International Society for Cellular The-rapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[6]Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immuno-modulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis[J]. J Immunol, 2009, 183(12):7787-7798.
[7]Wada N, Gronthos S, Bartold PM. Immunomodula-tory effects of stem cells[J]. Periodontol 2000, 2013, 63(1):198-216.
[8]Xu X, Chen C, Akiyama K, et al. Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells[J]. J Dent Res, 2013, 92(9):825-832.
[9]Wang F, Yu M, Yan X, et al. Gingiva-derived mesen-chymal stem cell-mediated therapeutic approach for bone tissue regeneration[J]. Stem Cells Dev, 2011, 20(12):2093-2102.
[10]Ge S, Mrozik KM, Menicanin D, et al. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: potential use for clinical therapy[J]. Regen Med, 2012, 7(6): 819-832.
[11]Moshaverinia A, Xu X, Chen C, et al. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration [J]. Biomaterials, 2014, 35(9):2642-2650.
[12]Ansari S, Chen C, Xu X, et al. Muscle tissue enginee-ring using gingival mesenchymal stem cells encapsu-lated in alginate hydrogels containing multiple growth factors[J]. Ann Biomed Eng, 2016, 44(6):1908-1920.
[13]Fawzy El-Sayed KM, Paris S, Becker ST, et al. Perio-dontal regeneration employing gingival margin-deri-ved stem/progenitor cells: an animal study[J]. J Clin Periodontol, 2012, 39(9):861-870.
[14]Chavez-Munoz C, Nguyen KT, Xu W, et al. Transdi-fferentiation of adipose-derived stem cells into kera-tinocyte-like cells: engineering a stratified epidermis [J]. PLoS One, 2013, 8(12):e80587.
[15]Mahdavishahri N, Moghatam Matin M, Fereidoni M, et al. In vitro assay of human gingival scaffold in differentiation of rat’s bone marrow mesenchymal stem cells to keratinocystes[J]. Iran J Basic Med Sci, 2012, 15(6):1185-1190.
[16]Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing[J]. Stem Cells, 2010, 28(10):1856-1868.
[17]Su WR, Zhang QZ, Shi SH, et al. Human gingiva-derived mesenchymal stromal cells attenuate contact hypersensitivity via prostaglandin E2-dependent mechanisms[J]. Stem Cells, 2011, 29(11):1849-1860.
[18]Chen M, Su W, Lin X, et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppres-sion of Th1 and Th17 cells and enhancement of re-gulatory T cell differentiation[J]. Arthritis Rheum, 2013, 65(5):1181-1193.
[19]Yang H, Gao LN, An Y, et al. Comparison of mesen-chymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions [J]. Biomaterials, 2013, 34(29):7033-7047.
[20]Li N, Liu N, Zhou J, et al. Inflammatory environment induces gingival tissue-specific mesenchymal stem cells to differentiate towards a pro-fibrotic pheno-type[J]. Biol Cell, 2013, 105(6):261-275.
[21]Van Pham P, Tran NY, Phan NL, et al. Vitamin C sti-mulates human gingival stem cell proliferation and expression of pluripotent markers[J]. In Vitro Cell Dev Biol Anim, 2016, 52(2):218-227.
[22]Coimbra LS, Steffens JP, Alsadun S, et al. Clopidogrel enhances mesenchymal stem cell proliferation follo-wing periodontitis[J]. J Dent Res, 2015, 94(12):1691-1697.
[23]Jiang CM, Liu J, Zhao JY, et al. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells[J]. J Dent Res, 2015, 94(1):69-77.
[24]Lee SI, Yeo SI, Kim BB, et al. Formation of size-controllable spheroids using gingiva-derived stem cells and concave microwells: morphology and via-bility tests[J]. Biomed Rep, 2016, 4(1):97-101.
[1] 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262.
[2] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[3] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
[4] 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285.
[5] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[6] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
[7] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[8] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[9] 孙兆泽,刘双,李纾. 神经导向分子及其在口腔组织再生中的作用[J]. 国际口腔医学杂志, 2019, 46(6): 680-686.
[10] 张凯莹,房付春,吴补领. 非编码RNA在牙源性干细胞成牙本质向分化中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 540-545.
[11] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[12] 胡巍,王译凡,袁一方,李影,郭斌. 节律基因调控成骨和破骨活动机制的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 302-307.
[13] 贾婷婷,颜世果. 特异性AT序列结合蛋白2在颌面部发育及牙周组织再生中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 320-325.
[14] 杨宇轩,张海霞,王爽. 釉原蛋白在牙周组织再生中的生物学作用[J]. 国际口腔医学杂志, 2019, 46(2): 191-196.
[15] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .