国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (2): 207-211.doi: 10.7518/gjkq.2016.02.020

• 综述 • 上一篇    下一篇

微环境对牙周膜干细胞分化的抑制和诱导作用

潘有条1,王一飞2,赵洵3,曾宪卓3,张贞1,程钧君1,李夏宁1,刘威1,赵红宇4   

  1. 1.郑州大学口腔医院牙周科 郑州 450000;2.暨南大学生命科学院 广州 510000;3.深圳爱生再生医学科技有限公司 深圳 518000;4.广东省口腔医院特诊中心 广州 511400
  • 收稿日期:2015-07-24 修回日期:2015-10-28 出版日期:2016-03-01 发布日期:2016-03-01
  • 通讯作者: 赵红宇,教授,硕士,Email:zhongyu93@163.com
  • 作者简介:潘有条,硕士,Email:729851264@qq.com
  • 基金资助:
    广东省医学科学技术研究基金(A2015616)

Inhibition and induction on the differentiation of periodontal ligament stem cells in different microenvironments

Pan Youtiao1, Wang Yifei2, Zhao Xun3, Zeng Xianzhuo3, Zhang Zhen1, Cheng Junjun1, Li Xianing1, Liu Wei1, Zhao Hongyu4   

  1. 1. Dept. of Periodontics, Hospital of Stomatology, Zhengzhou University, Zhengzhou 450000, China; 2. School of Life Sciences, Jinan University, Guangzhou 510000, China; 3. Shenzhen IStem Regenerative Medicine Sci-Tech Limitied Company, Shenzhen 518000, China; 4. Center of Special Diagnosis, Stomatological Hospital of Guangdong Province, Guangzhou 511400, China)
  • Received:2015-07-24 Revised:2015-10-28 Online:2016-03-01 Published:2016-03-01

摘要: 牙周膜干细胞(PDLSC)在牙周组织缺损修复和维持牙周动态平衡中起关键性的作用,是牙周组织再生修复治疗的基础细胞。在不同微环境作用下,PDLSC的增殖分化特性呈现出较大的差别。牙周膜干细胞龛和炎症等微环境对PDLSC的分化有抑制作用,然而,牙本质微环境及发育期根尖微环境能促进PDLSC的分化。研究不同的微环境对PDLSC功能的影响,一方面有助于深入研究PDLSC的生物学功能,另一方面为PDLSC应用于牙周疾病的再生治疗提供理论依据。本文就不同的微环境对PDLSC分化的抑制和诱导作用研究进展作一综述,并展望PDLSC在牙周缺损再生治疗中的应用前景。

关键词: 牙周, 牙周膜干细胞, 微环境, 细胞分化, 牙周, 牙周膜干细胞, 微环境, 细胞分化

Abstract: Periodontal ligament stem cells(PDLSC), basic cells in the new treatment strategy for periodontal regeneration, perform a triggering function in regeneration after periodontal defect and the maintenance of periodontal dynamic equilibrium. Based on basic research and preclinical studies, as well as clinical trials, PDLSC would show different proliferation and differentiation in different microenvironment. PDLSC niche and inflammation could inhibition differentiation, whereas the microenvironment of dentin and developmental apex could show promotion. Therefore, the effects of different microenvironments on PDLSC may open the access of biological function and present theoretic foundation for periodontal regeneration. Therefore, this review focuses on the features and functional mechanisms of periodontal microenvironments and adds further insight into the use of PDLSC preparation as viable therapy for periodontal regeneration.

Key words: periodontal, periodontal ligament stem cell, microenvironment, cell differentiation, periodontal, periodontal ligament stem cell, microenvironment, cell differentiation

中图分类号: 

  • Q 254
[1] Kinane DF, Marshall GJ. Periodontal manifestations of systemic disease[J]. Aust Dent J, 2001, 46(1):2-12.
[2] Gon?alves PF, Gurgel BC, Pimentel SP, et al. Effect of two different approaches for root decontamination on new cementum formation following guided tissue regeneration: a histomorphometric study in dogs[J]. J Periodont Res, 2006, 41(6):535-540.
[3] Venezia E, Goldstein M, Boyan BD, et al. The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis [J]. Crit Rev Oral Biol Med, 2004, 15(6):382-402.
[4] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429):149-155.
[5] Tobita M, Uysal AC, Ogawa R, et al. Periodontal tissue regeneration with adipose-derived stem cells [J]. Tissue Eng Part A, 2008, 14(6):945-953.
[6] Chen YL, Chen PK, Jeng LB, et al. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty[J]. Gene Ther, 2008, 15(22):1469-1477.
[7] Li H, Yan F, Lei L, et al. Application of autologous cryopreserved bone marrow mesenchymal stem cells for periodontal regeneration in dogs[J]. Cells Tissues Organs, 2009, 190(2):94-101.
[8] Tan Z, Zhao Q, Gong P, et al. Research on promoting promoting periodontal regeneration with human basic fibroblast growth factor-modified bone marrow mesenchymal stromal cell gene therapy[J]. Cytotherapy, 2009, 11(3):317-325.
[9] 唐亮, 金岩. 影响牙周膜干细胞功能的重要因素[J]. 实用口腔医学杂志, 2009, 25(5):737-740.
Tang L, Jin Y. The important factors influencing the functions of periodontal ligament stem cells[J]. J Pract Stomatol, 2009, 25(5):737-740.
[10] Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration[J]. Periodontol 2000, 2006, 40(1):164-172.
[11] 张盼盼, 李纾. 牙周组织自身稳定的分子机制研究进展[J]. 国际口腔医学杂志, 2010, 37(3):291-293.
Zhang PP, Li S. Research progress on homeostasis of periodontal tissues hi molecular mechanism[J]. Int J Stomatol, 2010, 37(3):291-293.
[12] 孙静, 李纾. 牙周膜干细胞巢与牙周组织再生[J].国际口腔医学杂志, 2011, 38(4):460-462.
Sun J, Li S. Periodontal ligament stem cell niche and periodontal tissue regeneration[J]. Int J Stomatol, 2011, 38(4):460-462.
[13] Pluchino S, Muzio L, Imitola J, et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment[J]. Brain, 2008, 131(Pt 10):2564-2578.
[14] Wang Y, Imitola J, Rasmussen S, et al. Paradoxical dysregulation of the neural stem cell pathway sonic hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis[J]. Ann Neurol, 2008, 64(4):417-427.
[15] Zenovich AG, Taylor DA. Atherosclerosis as a disease of failed endogenous repair[J]. Front Biosci, 2008, 13:3621-3636.
[16] Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer[J]. Annu Rev Cell Dev Biol, 2004, 20:695-723.
[17] Yamada S, Tomoeda M, Ozawa Y, et al. PLAP-1/ asporin, a novel negative regulator of periodontal ligament mineralization[J]. J Biol Chem, 2007, 282(32):23070-23080.
[18] Tomoeda M, Yamada S, Shirai H, et al. PLAP-1/ asporin inhibits activation of BMP receptor via its leucine-rich repeat motif[J]. Biochem Biophys Res Commun, 2008, 371(2):191-196.
[19] 李春雷, 卢昌懿, 李长霞, 等. miR101通过PLAP-1调节牙周膜细胞成骨分化的研究[J]. 牙体牙髓牙周病学杂志, 2014, 24(3):125-129. Li CL, Lu CY, Li CX, et al. miR101 regulates the osteogenic differentiation of periodontal ligament cells via PLAP-1[J]. Chin J Cons Dent, 2014, 24(3):125-129.
[20] Yin A, Korzh S, Winata CL, et al. Wnt signaling is required for early development of zebrafish swimbladder[J]. PLoS One, 2011, 6(3):e18431.
[21] Wu Y, Zhang Y, Zhang H, et al. p15RS attenuates Wnt/β-catenin signaling by disruptingβ-catenin TCF4 interaction[J]. J Biol Chem, 2010, 285(45):34621-34631.
[22] David MD, Cantí C, Herreros J. Wnt-3a and Wnt-3 differently stimulate proliferation and neurogenesis of spinal neural precursors and promote neurite outgrowth by canonical signaling[J]. J Neurosci Res, 2010, 88(14):3011-3023.
[23] Liu G, Vijayakumar S, Grumolato L, et al. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells[J]. J Cell Biol, 2009, 185(1):67-75.
[24] Liu N, Shi S, Deng M, et al. High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway[J]. J Bone Miner Res, 2011, 26(9):2082-2095.
[25] 刘一涵, 赵喜聪, 张勇杰, 等. 不同诱导环境对牙周膜干细胞膜片生物学特性的影响[J]. 实用口腔医学杂志, 2012, 28(3):279-284. Liu YH, Zhao XC, Zhang YJ, et al. Effects of different induction systems on periodontal ligament stem cell sheets[J]. J Pract Stomatol, 2012, 28(3):279-284.
[26] Zeichner-David M. Regeneration of periodontal tissues: cementogenesis revisited[J]. Periodontol 2000, 2006, 41:196-217.
[27] 蒋玉姣, 曹灵, 俞艳, 等. 牙本质非胶原蛋白对人牙髓干细胞增殖活性及矿化能力的影响[J]. 口腔生物医学杂志, 2013, 4(1):15-18.
Jiang YJ, Cao L, Yu Y, et al. Effects of dentin noncollagenous proteins on the proliferation and mineralization of human dental pulp stem cells[J]. Oral Biomed, 2013, 4(1):15-18.
[28] Ma ZF, Li S, Song Y, et al. The biological effect of dentin noncollagenous proteins(DNCPs) on the human periodontal ligament stem cells(HPDLSC) in vitro and in vivo[J]. Tissue Eng Part A, 2008, 14(12):2059-2068.
[29] Xu L, Tang L, Jin F, et al. The apical region of developing tooth root constitutes a complex and maintains the ability to generate root and periodontiumlike tissues[J]. J Periodont Res, 2009, 44(2):275-282.
[30] Yang ZH, Zhang XJ, Dang NN, et al. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues[J]. J Periodont Res, 2009, 44(2):199-210.
[31] 束丽红, 曹灵, 闫明, 等. 不同发育阶段的人牙周膜干细胞增殖能力和成牙/成骨能力的比较研究[J].口腔生物医学, 2013, 4(2):65-69. Shu LH, Cao L, Yan M, et al. Study on the proliferation and osteo/odongenic differentiation of human periodontal ligament stem cells in different developing stages[J]. Oral Biomed, 2013, 4(2):65-69.
[32] Ohshima H, Nakasone N, Hashimoto E, et al. The eternal tooth germ is formed at the apical end of continuously growing teeth[J]. Arch Oral Biol, 2005, 50(2):153-157.
[33] Zhou Y, Li Y, Mao L, et al. Periodontal healing by periodontal ligament cell sheets in a teeth replantation model[J]. Arch Oral Biol, 2012, 57(2):169-176.
[34] Foster BL, Popowics TE, Fong HK, et al. Advances in defining regulators of cementum development and periodontal regeneration[J]. Curr Top Dev Biol, 2007, 78(1):47-126.
(本文采编 王晴)
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[3] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[4] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[5] 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717.
[6] 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580.
[7] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[8] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[9] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[10] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[11] 杨梦瑶,高现灵,邓淑丽. 静电纺丝纳米纤维在牙周再生中的应用[J]. 国际口腔医学杂志, 2023, 50(1): 10-18.
[12] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[13] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[14] 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36.
[15] 罗婉逸,韩居熺,周学东,彭显,郑欣. 具核梭杆菌促进结直肠癌发生发展机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .