Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 432-440.doi: 10.7518/gjkq.2022055

• Reviews • Previous Articles     Next Articles

Research progress on the genetic polymorphism of periodontitis

Zhou Jiajia1(),Zhao Lei2,Xu Xin1()   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Di-seases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomato-logy, Sichuan University, Chengdu 610041, China
  • Received:2021-11-29 Revised:2022-03-10 Online:2022-07-01 Published:2022-06-28
  • Contact: Xin Xu;
  • Supported by:
    National Natural Science Foundation of China(81771099);Clinical Cohort Study Project of West China Hospital of Stomatology, Sichuan University(LCYJ2019-4)


Periodontitis is a chronic infectious disease resulting from the complex interaction among microbial, genetic, and environmental factors. Genetic polymorphisms that affect host innate immune and regulate the structure of the microbial community have been implicated in the development and prognosis of periodontitis. Early studies on genetic susceptibility of periodontitis have focused on single-nucleotide polymorphisms of cytokines, chemokines, metabolic regulators, and proteins of innate and acquired immune responses associated with the development of periodontitis. With the completion of the Human Genome Project and the development of high-throughput sequencing technology, the genome-wide association study has become an effective strategy to study genetic variation in periodontitis. In addition, the post genome-wide association study applied new statistical methods to identify more genetic mechanisms of periodontitis. This review summarized the progress on the genetic susceptibility of periodontitis obtained from single-nucleotide polymorphism, genome-wide association, and post-genome-wide association studies to advance the knowledge on periodontal high-risk po-pulation precision management from the genetic polymorphism perspective.

Key words: periodontitis, susceptibility, single nucleo-tide polymorphism, genome wide association study, innate immune

CLC Number: 

  • R 781.4

1 Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038.
2 Risch NJ. Searching for genetic determinants in the new millennium[J]. Nature, 2000, 405(6788): 847-856.
3 Loos BG, van Dyke TE. The role of inflammation and genetics in periodontal disease[J]. Periodontol 2000, 2020, 83(1): 26-39.
4 Nielsen R. Population genetic analysis of ascertained SNP data[J]. Hum Genomics, 2004, 1(3): 218-224.
5 Yoshie H, Kobayashi T, Tai H, et al. The role of genetic polymorphisms in periodontitis[J]. Periodontol 2000, 2007, 43: 102-132.
6 Tatakis DN. Interleukin-1 and bone metabolism: a review[J]. J Periodontol, 1993, 64(5 ): 416-431.
7 Kornman KS, Crane A, Wang HY, et al. The interleukin-1 genotype as a severity factor in adult perio-dontal disease[J]. J Clin Periodontol, 1997, 24(1): 72-77.
8 Laine ML, Farré MA, González G, et al. Polymorphisms of the interleukin-1 gene family, oral microbial pathogens, and smoking in adult periodontitis[J]. J Dent Res, 2001, 80(8): 1695-1699.
9 Nikolopoulos GK, Dimou NL, Hamodrakas SJ, et al. Cytokine gene polymorphisms in periodontal di-sease: a meta-analysis of 53 studies including 4 178 cases and 4 590 controls[J]. J Clin Periodontol, 2008, 35(9): 754-767.
10 Ma L, Chu WM, Zhu J, et al. Interleukin-1β (3953/4) C→T polymorphism increases the risk of chronic periodontitis in Asians: evidence from a meta-analysis of 20 case-control studies[J]. Arch Med Sci, 2015, 11(2): 267-273.
11 da Silva FR, Guimarães-Vasconcelos AC, de-Carvalho-França LF, et al. Relationship between -889 C/T polymorphism in interleukin-1A gene and risk of chronic periodontitis: evidence from a meta-analysis with new published findings[J]. Med Oral Patol Oral Cir Bucal, 2017, 22(1): e7-e14.
12 Diehl SR, Wang Y, Brooks CN, et al. Linkage disequilibrium of interleukin-1 genetic polymorphisms with early-onset periodontitis[J]. J Periodontol, 1999, 70(4): 418-430.
13 Boukortt KN, Saidi-Ouahrani N, Boukerzaza B, et al. Association analysis of the IL-1 gene cluster polymorphisms with aggressive and chronic perio-dontitis in the Algerian population[J]. Arch Oral Biol, 2015, 60(10): 1463-1470.
14 Holla LI, Fassmann A, Augustin P, et al. The asso-ciation of interleukin-4 haplotypes with chronic pe-riodontitis in a Czech population[J]. J Periodontol, 2008, 79(10): 1927-1933.
15 Chen D, Zhang TL, Wang X. Association between polymorphisms in interleukins 4 and 13 genes and chronic periodontitis in a Han Chinese population[J]. Biomed Res Int, 2016, 2016: 8389020.
16 Yan Y, Weng H, Shen ZH, et al. Association between interleukin-4 gene -590 c/t, -33 c/t, and 70-base-pair polymorphisms and periodontitis susceptibility: a meta-analysis[J]. J Periodontol, 2014, 85(11): e354-e362.
17 Jia XW, Yuan YD, Yao ZX, et al. Association between IL-4 and IL-4R polymorphisms and periodontitis: a meta-analysis[J]. Dis Markers, 2017, 2017: 8021279.
18 Zhao B, Li XQ, Li RH. Genetic relationship between IL-6 rs1800796 polymorphism and susceptibility to periodontitis[J]. Immunol Invest, 2019, 48(3): 268-282.
19 Nibali L, D’ Aiuto F, Donos N, et al. Association between periodontitis and common variants in the promoter of the interleukin-6 gene[J]. Cytokine, 2009, 45(1): 50-54.
20 Zhao B, Li RH. The association between periodontitis and interleukin-6 genetic polymorphism -174 G/C: a meta-analysis[J]. Arch Oral Biol, 2018, 96: 13-20.
21 Sajadi M, Shahmohammadi A, Mahmazi S, et al. Study of association between interleukin-8-845 T/C and+781 C/T polymorphisms with periodontitis di-sease among population from Western Iran[J]. Mol Biol Rep, 2018, 45(5): 1263-1268.
22 Chen X, Huang JP, Zhong LJ, et al. Quantitative assessment of the associations between interleukin-8 polymorphisms and periodontitis susceptibility[J]. J Periodontol, 2015, 86(2): 292-300.
23 Claudino M, Trombone AP, Cardoso CR, et al. The broad effects of the functional IL-10 promoter-592 polymorphism: modulation of IL-10, TIMP-3, and OPG expression and their association with periodontal disease outcome[J]. J Leukoc Biol, 2008, 84(6): 1565-1573.
24 Zhong QF, Ding C, Wang ML, et al. Interleukin-10 gene polymorphisms and chronic/aggressive perio-dontitis susceptibility: a meta-analysis based on 14 case-control studies[J]. Cytokine, 2012, 60(1): 47-54.
25 Zhang Z, Zheng YL, Li XY. Interleukin-10 gene polymorphisms and chronic periodontitis susceptibility: evidence based on 33 studies[J]. J Periodontal Res, 2019, 54(2): 95-105.
26 Taiete T, Casati MZ, Stolf CS, et al. Validation of reported GLT6D1 (rs1537415), IL10 (rs6667202), and ANRIL (rs1333048) single nucleotide polymorphisms for aggressive periodontitis in a Brazilian population[J]. J Periodontol, 2019, 90(1): 44-51.
27 Wang Z, Li YF, Zhou YH, et al. Association between the IL-10 rs1800872 polymorphisms and pe-riodontitis susceptibility: a meta-analysis[J]. Medicine (Baltimore), 2019, 98(40): e17113.
28 Song GG, Choi SJ, Ji JD, et al. Association between tumor necrosis factor-α promoter -308 A/G, -238 A/G, interleukin-6 -174 G/C and -572 G/C polymorphisms and periodontal disease: a meta-analysis[J]. Mol Biol Rep, 2013, 40(8): 5191-5203.
29 Wei XM, Chen YJ, Wu L, et al. Tumor necrosis factor‑α G-308A (rs1800629) polymorphism and aggressive periodontitis susceptibility: a meta-analysis of 16 case-control studies[J]. Sci Rep, 2016, 6: 19099.
30 Li Y, Yang J, Wu XY, et al. TNF-α polymorphisms might influence predisposition to periodontitis: a meta-analysis[J]. Microb Pathog, 2020, 143: 104113.
31 Hajishengallis E, Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults[J]. J Dent Res, 2014, 93(3): 231-237.
32 Saremi L, Esmaeilzadeh E, Ghorashi T, et al. Association of Fc gamma-receptor genes polymorphisms with chronic periodontitis and peri-implantitis[J]. J Cell Biochem, 2019. doi:10.1002/jcb.28486 .
doi: 10.1002/jcb.28486
33 Song GG, Lee YH. Associations between FCGR2A rs1801274, FCGR3A rs396991, FCGR3B NA1/NA2 polymorphisms and periodontitis: a meta-analysis[J]. Mol Biol Rep, 2013, 40(8): 4985-4993.
34 Fu YL, Korostoff JM, Fine DH, et al. Fc gamma receptor genes as risk markers for localized aggressive periodontitis in African-Americans[J]. J Perio-dontol, 2002, 73(5): 517-523.
35 Sellers RM, Payne JB, Yu F, et al. TLR4 Asp299Gly polymorphism may be protective against chronic periodontitis[J]. J Periodontal Res, 2016, 51(2): 203-211.
36 Shan C, Aisaiti A, Wu ZP, et al. Association of TLR-2 gene polymorphisms with the risk of periodontitis: a meta-analysis[J]. Dis Markers, 2020, 2020: 9353958.
37 Leite FRM, Enevold C, Bendtzen K, et al. Pattern recognition receptor polymorphisms in early perio-dontitis[J]. J Periodontol, 2019, 90(6): 647-654.
38 Zhang Y, Syed R, Uygar C, et al. Evaluation of human leukocyte N-formylpeptide receptor (FPR1) SNPs in aggressive periodontitis patients[J]. Genes Immun, 2003, 4(1): 22-29.
39 Maney P, Walters JD. Formylpeptide receptor single nucleotide polymorphism 348T>C and its relationship to polymorphonuclear leukocyte chemotaxis in aggressive periodontitis[J]. J Periodontol, 2009, 80(9): 1498-1505.
40 Laky M, Bertl K, Haririan H, et al. Serum levels of 25-hydroxyvitamin D are associated with periodontal disease[J]. Clin Oral Investig, 2017, 21(5): 1553-1558.
41 Guo HX, Pan J, Pan HB, et al. Correlation of vitamin D receptor gene (ApaⅠ) polymorphism with periodontitis: a meta-analysis of Chinese population[J]. Food Sci Nutr, 2019, 7(11): 3607-3612.
42 Torrungruang K, Chantarangsu S, Sura T, et al. Interplay between vitamin D receptor FokⅠ polymorphism and smoking influences Porphyromonas gingivalis proportions in subgingival plaque[J]. J Clin Periodontol, 2020, 47(8): 912-920.
43 Wan QS, Li L, Yang SK, et al. Role of vitamin D receptor gene polymorphisms on the susceptibility to periodontitis: a meta-analysis of a controversial issue[J]. Genet Test Mol Biomarkers, 2019, 23(9): 618-633.
44 Alfant B, Shaddox LM, Tobler J, et al. Matrix metalloproteinase levels in children with aggressive pe-riodontitis[J]. J Periodontol, 2008, 79(5): 819-826.
45 Ding C, Chen X, Zhang PT, et al. Matrix metalloproteinase-3 -1171 5A/6A polymorphism (rs35068180) is associated with risk of periodontitis[J]. Sci Rep, 2015, 5: 11667.
46 Hsiao YF, Yang LC, Chou YS, et al. Matrix metalloproteinase-2, -9, and tissue inhibitor of MMP-2 gene polymorphisms in Taiwanese periodontitis patients[J]. J Dent Sci, 2016, 11(4): 411-418.
47 Heikkinen AM, Raivisto T, Kettunen K, et al. Pilot study on the genetic background of an active matrix metalloproteinase-8 test in Finnish adolescents [J]. J Periodontol, 2017, 88(5): 464-472.
48 Weng H, Yan Y, Jin YH, et al. Matrix metalloproteinase gene polymorphisms and periodontitis susceptibility: a meta-analysis involving 6,162 indivi-duals[J]. Sci Rep, 2016, 6: 24812.
49 Schaefer AS, Richter GM, Nothnagel M, et al. A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis[J]. Hum Mol Genet, 2010, 19(3): 553-562.
50 Hashim NT, Linden GJ, Ibrahim ME, et al. Replication of the association of GLT6D1 with aggressive periodontitis in a Sudanese population[J]. J Clin Pe-riodontol, 2015, 42(4): 319-324.
51 Munz M, Willenborg C, Richter GM, et al. A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis[J]. Hum Mol Genet, 2017, 26(13): 2577-2588.
52 Shungin D, Haworth S, Divaris K, et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data[J]. Nat Commun, 2019, 10(1): 2773.
53 Tong H, Wei ZL, Yin J, et al. Genetic susceptibility of common polymorphisms in NIN and SIGLEC5 to chronic periodontitis[J]. Sci Rep, 2019, 9(1): 2088.
54 Lundy FT, El Karim IA, Linden GJ. Neuropeptide Y (NPY) and NPY Y1 receptor in periodontal health and disease[J]. Arch Oral Biol, 2009, 54(3): 258-262.
55 Freitag-Wolf S, Dommisch H, Graetz C, et al. Genome-wide exploration identifies sex-specific gene-tic effects of alleles upstream NPY to increase the risk of severe periodontitis in men[J]. J Clin Perio-dontol, 2014, 41(12): 1115-1121.
56 Cirelli T, Nepomuceno R, Orrico SRP, et al. Validation in a Brazilian population of gene markers of periodontitis previously investigated by GWAS and bioinformatic studies[J]. J Periodontol, 2021, 92(5): 689-703.
57 Shusterman A, Munz M, Richter G, et al. The PF4/PPBP/CXCL5 gene cluster is associated with perio-dontitis[J]. J Dent Res, 2017, 96(8): 945-952.
58 Congrains A, Kamide K, Ohishi M, et al. ANRIL: molecular mechanisms and implications in human health[J]. Int J Mol Sci, 2013, 14(1): 1278-1292.
59 Schaefer AS, Richter GM, Groessner-Schreiber B, et al. Identification of a shared genetic susceptibility locus for coronary heart disease and periodontitis[J]. PLoS Genet, 2009, 5(2): e1000378.
60 Ernst FD, Uhr K, Teumer A, et al. Replication of the association of chromosomal region 9p21.3 with ge-neralized aggressive periodontitis (gAgP) using an independent case-control cohort[J]. BMC Med Genet, 2010, 11: 119.
61 Schaefer AS, Bochenek G, Manke T, et al. Validation of reported genetic risk factors for periodontitis in a large-scale replication study[J]. J Clin Periodontol, 2013, 40(6): 563-572.
62 Fentoğlu Ö, Dinç G, Doğru A, et al. Serum, salivary, and tissue levels of plasminogen in familial Mediterranean fever, amyloidosis, and chronic perio-dontitis[J]. J Periodontol, 2018, 89(4): 456-465.
63 Gürkan A, Emingil G, Saygan BH, et al. Tissue plasminogen activator and plasminogen activator inhibitor-1 gene polymorphisms in patients with chronic periodontitis[J]. J Periodontol, 2007, 78(7): 1256-1263.
64 Munz M, Chen H, Jockel-Schneider Y, et al. A haplotype block downstream of plasminogen is associated with chronic and aggressive periodontitis[J]. J Clin Periodontol, 2017, 44(10): 962-970.
65 Di Micco A, Frera G, Lugrin J, et al. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity[J]. Proc Natl Acad Sci U S A, 2016, 113(32): E4671-E4680.
66 Marchesan JT, Jiao YZ, Moss K, et al. Common polymorphisms in IFI16 and AIM2 genes are asso-ciated with periodontal disease[J]. J Periodontol, 2017, 88(7): 663-672.
67 Li WJ, Zheng QW, Meng HX, et al. Integration of genome-wide association study and expression quan-titative trait loci data identifies AIM2 as a risk gene of periodontitis[J]. J Clin Periodontol, 2020, 47(5): 583-593.
68 Divaris K, Monda KL, North KE, et al. Exploring the genetic basis of chronic periodontitis: a genome-wide association study[J]. Hum Mol Genet, 2013, 22(11): 2312-2324.
69 Yoshihara A, Sugita N, Iwasaki M, et al. The interaction between β-3 adrenergic receptor and peroxisome proliferator-activated receptor gamma gene po-lymorphism to periodontal disease in community-dwelling elderly Japanese[J]. J Periodontol, 2015, 86(8): 955-963.
70 Salazar C, Ruiz-Hincapie P, Ruiz LM. The interplay among PINK1/PARKIN/dj-1 network during mitochondrial quality control in cancer biology: protein interaction analysis[J]. Cells, 2018, 7(10): E154.
71 Botelho J, Mascarenhas P, Mendes JJ, et al. Network protein interaction in Parkinson’s disease and periodontitis interplay: a preliminary bioinformatic analysis[J]. Genes (Basel), 2020, 11(11): E1385.
72 Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1620): 20120362.
73 Fang Z, Song M, Lee DH, et al. The role of Mendelian randomization studies in deciphering the effect of obesity on cancer[J]. J Natl Cancer Inst, 2022, 114(3): 361-371.
74 Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy[J]. Eur Heart J, 2019, 40(42): 3459-3470.
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Li Ran,Hu Yue,Zhang Ning,Gao Ruifang,Wang Xiangyu,Ge Xuejun. The correlation study between single nucleotide polymorphisms of Toll-like receptor and interleukin-17 and oral lichen planus [J]. Int J Stomatol, 2024, 51(1): 45-51.
[3] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[4] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[5] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[6] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[7] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[8] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[9] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[10] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[11] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[12] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[13] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[14] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
[15] Zhu Jiani,Su Qin. Research status of the use of root canal and periapical microflora in refractory periapical periodontitis [J]. Int J Stomatol, 2022, 49(3): 283-289.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .