Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 392-396.doi: 10.7518/gjkq.2022039
• Oral Microbiology • Previous Articles Next Articles
CLC Number:
1 | Listl S, Galloway J, Mossey PA, et al. Global economic impact of dental diseases[J]. J Dent Res, 2015, 94(10): 1355-1361. |
2 | Yoo HJ, Jwa SK. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm[J]. Arch Oral Biol, 2018, 88: 42-46. |
3 | Kleinberg I. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis[J]. Crit Rev Oral Biol Med, 2002, 13(2): 108-125. |
4 | Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process[J]. Community Dent Oral Epidemiol, 2005, 33(4): 248-255. |
5 | 辛秉昌, 徐仰龙, 李艳莉, 等. 生物膜中不同种属微生物的交流与合作[J]. 中国科学: 生命科学, 2010, 40(11): 1002-1013. |
Xin BC, Xu YL, Li YL, et al. Communication and cooperation of different microorganisms within biofilms[J]. Sci Sin (Vitae), 2010, 40(11): 1002-1013. | |
6 | Raja M, Hannan A, Ali K. Association of oral candidal carriage with dental caries in children[J]. Caries Res, 2010, 44(3): 272-276. |
7 | Metwalli KH, Khan SA, Krom BP, et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation[J]. PLoS Pathog, 2013, 9(10): e100-3616. |
8 | Xiao J, Klein MI, Falsetta ML, et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm[J]. PLoS Pathog, 2012, 8(4): e1002623. |
9 | Falsetta ML, Klein MI, Lemos JA, et al. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo [J]. Antimicrob Agents Chemother, 2012, 56(12): 6201-6211. |
10 | Islam B, Khan SN, Khan AU. Dental caries: from infection to prevention[J]. Med Sci Monit, 2007, 13(11): RA196-RA203. |
11 | 徐蓉蓉, 王斌, 葛久禹. 口腔链球菌密度感应信号系统comE基因及luxS基因的检测分析[J]. 华西口腔医学杂志, 2011, 29(4): 355-357. |
Xu RR, Wang B, Ge JY. Detection and analysis of comE and luxS genes in quorum sensing signal pathway from Streptococcus oralis [J]. West China J Stomatol, 2011, 29(4): 355-357. | |
12 | Rodrigues CF, Rodrigues ME, Silva S, et al. Candida glabrata biofilms: how far have we come[J]. J Fungi (Basel), 2017, 3(1): 11. |
13 | Chevalier M, Ranque S, Prêcheur I. Oral fungal-bacterial biofilm models in vitro: a review[J]. Med Mycol, 2018, 56(6): 653-667. |
14 | Jacobsen ID, Wilson D, Wächtler B, et al. Candida albicans dimorphism as a therapeutic target[J]. Expert Rev Anti Infect Ther, 2012, 10(1): 85-93. |
15 | Jin Y, Samaranayake LP, Samaranayake Y, et al. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars[J]. Arch Oral Biol, 2004, 49(10): 789-798. |
16 | 袁有华, 白丽. 分子生物学技术在念珠菌分类鉴定中的应用[J]. 中华检验医学杂志, 2008, 31(2): 220-222. |
Yuan YH, Bai L.Application of molecular biology techniques in the classification and identification of Candida [J]. Chin J Lab Med, 2008, 31(2): 220-222. | |
17 | Klinke T, Guggenheim B, Klimm W, et al. Dental caries in rats associated with Candida albicans [J]. Caries Res, 2011, 45(2): 100-106. |
18 | Sztajer H, Szafranski SP, Tomasch J, et al. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans [J]. ISME J, 2014, 8(11): 2256-2271. |
19 | Xiao J, Moon Y, Li LH, et al. Candida albicans carriage in children with severe early childhood caries (S-ECC) and maternal relatedness[J]. PLoS One, 2016, 11(10): e0164242. |
20 | Falsetta ML, Klein MI, Colonne PM, et al. Symbio-tic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo [J]. Infect Immun, 2014, 82(5): 1968-1981. |
21 | Kim D, Sengupta A, Niepa TH, et al. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites[J]. Sci Rep, 2017, 7: 41332. |
22 | Willems HM, Kos K, Jabra-Rizk MA, et al. Candida albicans in oral biofilms could prevent caries[J]. Pathog Dis, 2016, 74(5): ftw039. |
23 | Hwang G, Marsh G, Gao L, et al. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans [J]. J Dent Res, 2015, 94(9): 1310-1317. |
24 | Marsh PD. Sugar, fluoride, pH and microbial homeostasis in dental plaque[J]. Proc Finn Dent Soc, 1991, 87(4): 515-525. |
25 | 王峥, 周学东, 任彪. 白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究[J]. 四川大学学报(医学版), 2020, 51(6): 742-748. |
Wang Z, Zhou XD, Ren B. Ergosterol pathway of Candida albicans promotes the growth and cariogenic virulence of Streptococcus mutans [J]. J Si-chuan Univ (Med Sci), 2020, 51(6): 742-748. | |
26 | Cury JA, Rebelo MA, Del Bel Cury AA, et al. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose[J]. Caries Res, 2000, 34(6): 491-497. |
27 | Ribeiro CC, Tabchoury CP, Del Bel Cury AA, et al. Effect of starch on the cariogenic potential of sucrose[J]. Br J Nutr, 2005, 94(1): 44-50. |
28 | Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol[J]. Appl Environ Microbiol, 2001, 67(7): 2982-2992. |
29 | Fernandes RA, Monteiro DR, Arias LS, et al. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation[J]. Biofouling, 2016, 32(3): 329-338. |
30 | Barbosa JO, Rossoni RD, Vilela SF, et al. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans [J]. PLoS One, 2016, 11(3): e0150457. |
31 | Takenaka S, Ohsumi T, Noiri Y. Evidence-based stra-tegy for dental biofilms: current evidence of mouthwashes on dental biofilm and gingivitis[J]. Jpn Dent Sci Rev, 2019, 55(1): 33-40. |
32 | Rahmani-Badi A, Sepehr S, Babaie-Naiej H. A combination of cis-2-decenoic acid and chlorhexidine removes dental plaque[J]. Arch Oral Biol, 2015, 60(11): 1655-1661. |
33 | Monteiro DR, Arias LS, Fernandes RA, et al. Role of tyrosol on Candida albicans, Candida glabrata and Streptococcus mutans biofilms developed on different surfaces[J]. Am J Dent, 2017, 30(1): 35-39. |
34 | Yassin SA, German MJ, Rolland SL, et al. Inhibition of multispecies biofilms by a fluoride-releasing dental prosthesis copolymer[J]. J Dent, 2016, 48: 62-70. |
35 | Fumes AC, Romualdo PC, Monteiro RM, et al. Influence of pre-irradiation time employed in antimicrobial photodynamic therapy with diode laser[J]. Lasers Med Sci, 2018, 33(1): 67-73. |
36 | Trigo-Gutierrez JK, Sanitá PV, Tedesco AC, et al. Effect of chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm[J]. Photodiagnosis Photodyn Ther, 2018, 24: 212-219. |
37 | Kim D, Liu Y, Benhamou RI, et al. Bacterial-derived exopolysaccharides enhance antifungal drug tolerance in a cross-kingdom oral biofilm[J]. ISME J, 2018, 12(6): 1427-1442. |
38 | Feldman M, Shenderovich J, Lavy E, et al. A sustained-release membrane of thiazolidinedione-8: effect on formation of a candida/bacteria mixed biofilm on hydroxyapatite in a continuous flow model[J]. Biomed Res Int, 2017, 2017: 3510124. |
39 | Elshinawy MI, Al-Madboly LA, Ghoneim WM, et al. Synergistic effect of newly introduced root canal medicaments; ozonated olive oil and chitosan nano-particles, against persistent endodontic pathogens[J]. Front Microbiol, 2018, 9: 1371. |
40 | Kıvanç M, Barutca B, Koparal AT, et al. Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability[J]. Mater Sci Eng C Mater Biol Appl, 2018, 91: 115-124. |