Int J Stomatol ›› 2021, Vol. 48 ›› Issue (2): 187-191.doi: 10.7518/gjkq.2021044
• Reviews • Previous Articles Next Articles
CLC Number:
[1] |
Cai J, Palamara J, Manton DJ, et al. Status and pro-gress of treatment methods for root caries in the last decade: a literature review[J]. Aust Dent J, 2018,63(1):34-54.
pmid: 28833210 |
[2] |
Takahashi N, Nyvad B. Ecological hypojournal of dentin and root caries[J]. Caries Res, 2016,50(4):422-431.
doi: 10.1159/000447309 pmid: 27458979 |
[3] |
Mayanagi G, Igarashi K, Washio J, et al. pH response and tooth surface solubility at the tooth/bacteria interface[J]. Caries Res, 2017,51(2):160-166.
pmid: 28147347 |
[4] | Hayes M, Brady P, Burke FM, et al. Failure rates of class Ⅴ restorations in the management of root caries in adults-a systematic review[J]. Gerodontology, 2016,33(3):299-307. |
[5] |
Bizhang M, Ellerbrock BI, Preza D, et al. Detection of nine microorganisms from the initial carious root lesions using a TaqMan-based real-time PCR[J]. Oral Dis, 2011,17(7):642-652.
pmid: 21605286 |
[6] |
Do T, Damé-Teixeira N, Naginyte M, et al. Root surface biofilms and caries[J]. Monogr Oral Sci, 2017,26:26-34.
pmid: 29050018 |
[7] | 蒋倩. 老年人群根龋和冠部龋口腔微生物群落结构分析[J]. 重庆: 重庆医科大学, 2019. |
Jiang Q. The oral microbiome in the elderly with root and coronal caries[J]. Chongqing:Chongqing Medical Universeity, 2019. | |
[8] |
Chen L, Qin BC, Du MQ, et al. Extensive description and comparison of human supra-gingival microbiome in root caries and health[J]. PLoS One, 2015,10(2):e0117064.
doi: 10.1371/journal.pone.0117064 pmid: 25658087 |
[9] | Nyvad B, Kilian M. Microflora associated with experimental root surface caries in humans[J]. Infect Immun, 1990,58(6):1628-1633. |
[10] |
Dige I, Nyvad B. Candida species in intact in vivo biofilm from carious lesions[J]. Arch Oral Biol, 2019,101:142-146.
doi: 10.1016/j.archoralbio.2019.03.017 pmid: 30933902 |
[11] | Pereira D, Seneviratne CJ, Koga-Ito CY, et al. Is the oral fungal pathogen Candida albicans a cariogen[J]. Oral Dis, 2018,24(4):518-526. |
[12] | Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013,4(2):119-128. |
[13] |
Schlafer S, Kamp A, Garcia JE. A confocal microscopy based method to monitor extracellular pH in fungal biofilms[J]. FEMS Yeast Res, 2018,18(5). doi: 10.1093/femsyr/foy049.
pmid: 29518226 |
[14] |
Caroline de Abreu Brandi T, Portela MB, Lima PM, et al. Demineralizing potential of dental biofilm added with Candida albicans and Candida parapsilosis isolated from preschool children with and without caries[J]. Microb Pathog, 2016,100:51-55.
doi: 10.1016/j.micpath.2016.09.003 pmid: 27612675 |
[15] |
Sampaio AA, Souza SE, Ricomini-Filho AP, et al. Candida albicans increases dentine demineralization provoked by Streptococcus mutans biofilm[J]. Caries Res, 2019,53(3):322-331.
doi: 10.1159/000494033 pmid: 30448846 |
[16] | Qiu RM, Li WQ, Lin Y, et al. Genotypic diversity and cariogenicity of Candida albicans from children with early childhood caries and caries-free children[J]. BMC Oral Heal, 2015,15(1):1-6. |
[17] |
Ev LD, Damé-Teixeira N, Do T, et al. The role of Candida albicans in root caries biofilms: an RNA-seq analysis[J]. J Appl Oral Sci, 2020,28:e20190578.
doi: 10.1590/1678-7757-2019-0578 pmid: 32348446 |
[18] |
Deng L, Li W, He Y, et al. Cross-kingdom interaction of Candida albicans and Actinomyces viscosus elevated cariogenic virulence[J]. Arch Oral Biol, 2019,100:106-112.
doi: 10.1016/j.archoralbio.2019.02.008 pmid: 30822704 |
[19] | Switalski LM, Butcher WG. An in vitro model for adhesion of bacteria to human tooth root surfaces[J]. Arch Oral Biol, 1994,39(2):155-161. |
[20] | Komiyama K, Khandelwal RL, Heinrich SE. Glycogen synthetic and degradative activities by Actinomyces viscosus and Actinomyces naeslundii of root surface caries and noncaries sites[J]. Caries Res, 1988,22(4):217-225. |
[21] |
Guo YQ, Wei CL, Liu CX, et al. Inhibitory effects of oral Actinomyces on the proliferation, virulence and biofilm formation of Candida albicans[J]. Arch Oral Biol, 2015,60(9):1368-1374.
doi: 10.1016/j.archoralbio.2015.06.015 pmid: 26143096 |
[22] |
Arzmi MH, Dashper S, Catmull D, et al. Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent[J]. FEMS Yeast Res, 2015, 15(5): fov038.
pmid: 26054855 |
[23] |
Arzmi MH, Alnuaimi AD, Dashper S, et al. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent[J]. Med Mycol, 2016,54(8):856-864.
doi: 10.1093/mmy/myw042 pmid: 27354487 |
[24] | Cavalcanti IM, Del Bel Cury AA, Jenkinson HF, et al. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle[J]. Mol Oral Microbiol, 2017,32(1):60-73. |
[25] |
Morse DJ, Wilson MJ, Wei X, et al. Modulation of Candida albicans virulence in in vitro biofilms by oral bacteria[J]. Lett Appl Microbiol, 2019,68(4):337-343.
pmid: 30825340 |
[26] |
Deng L, Zou L, Wu J, et al. Voriconazole inhibits cross-kingdom interactions between Candida albicans and Actinomyces viscosus through the ergosterol pathway[J]. Int J Antimicrob Agents, 2019,53(6):805-813.
pmid: 30818001 |
[27] |
Heasman PA, Ritchie M, Asuni A, et al. Gingival recession and root caries in the ageing population: a critical evaluation of treatments[J]. J Clin Periodontol, 2017,44(Suppl 18):S178-S193.
doi: 10.1111/jcpe.12676 |
[28] |
Wang L, Li CY, Weir MD, et al. Novel multifunctional dental bonding agent for class-Ⅴ restorations to inhibit periodontal biofilms[J]. RSC Adv, 2017,7(46):29004-29014.
doi: 10.1039/C6RA28711E pmid: 29910954 |
[29] |
Zhang N, Melo MA, Chen C, et al. Development of a multifunctional adhesive system for prevention of root caries and secondary caries[J]. Dent Mater, 2015,31(9):1119-1131.
pmid: 26187532 |
[30] |
Zhou W, Zhou X, Huang X, et al. Antibacterial and remineralizing nanocomposite inhibit root caries biofilms and protect root dentin hardness at the margins[J]. J Dent, 2020,97:103344.
doi: 10.1016/j.jdent.2020.103344 pmid: 32315666 |
[1] | Yang Sirui,Ren Biao,Peng Xian,Xu Xin. Research progress on drug synergism with fluconazole in fluconazole-resistant Candida albicans [J]. Int J Stomatol, 2022, 49(5): 511-520. |
[2] | Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396. |
[3] | Liu Qianxi,Wu Jiayi,Ren Biao,Huang Ruijie. Research progress on the interactions between Enterococcus faecalis and other oral microorganisms [J]. Int J Stomatol, 2022, 49(3): 290-295. |
[4] | Li Fan,Zhang Lijuan,Tan Kaixuan,Zhang Ying,Lu Jie,Li Shanshan,Yang Fang. Antimicrobial effect of chlorhexidine on Candida albicans in vitro according to D2O-labeled single-cell Raman micro-spectroscopy [J]. Int J Stomatol, 2021, 48(1): 35-40. |
[5] | Hu Yao,Cheng Lei,Guo Qiang,Ren Biao. Research progress on cross-kingdom interactions between Candida albicans and common oral bacteria [J]. Int J Stomatol, 2019, 46(6): 663-669. |
[6] | Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi. Research progress on the mechanism of Candida albicans in oral carcinogenesis [J]. Int J Stomatol, 2019, 46(6): 705-710. |
[7] | Feng Jin,Wu Hongkun. Research progress on antibacterial dental materials in the treatment of root caries [J]. Int J Stomatol, 2019, 46(4): 475-480. |
[8] | Qian Du,Biao Ren,Xuedong Zhou,Xin Xu. The microbial ecology of root caries [J]. Int J Stomatol, 2019, 46(3): 326-332. |
[9] | Yilong Hao,Yu Zhou,Qianming Chen. Research progress on the risk factors of median rhomboid glossitis [J]. Int J Stomatol, 2019, 46(3): 333-338. |
[10] | Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552. |