Int J Stomatol ›› 2019, Vol. 46 ›› Issue (3): 326-332.doi: 10.7518/gjkq.2019007
• Reviews • Previous Articles Next Articles
Qian Du1,Biao Ren2,Xuedong Zhou1,Xin Xu1()
CLC Number:
[1] |
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990- 2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017,390(10100):1211-1259.
doi: 10.1016/S0140-6736(17)32154-2 |
[2] |
Carvalho TS, Lussi A . Assessment of root caries lesion activity and its histopathological features[J]. Monogr Oral Sci, 2017,26:63-69.
doi: 10.1159/issn.0077-0892 |
[3] |
Damé-Teixeira N, Parolo CCF, Maltz M . Specificities of caries on root surface[J]. Monogr Oral Sci, 2017,26:15-25.
doi: 10.1159/issn.0077-0892 |
[4] |
Mayanagi G, Igarashi K, Washio J , et al. pH response and tooth surface solubility at the tooth/bacteria interface[J]. Caries Res, 2017,51(2):160-166.
doi: 10.1159/000454781 |
[5] |
Deyhle H, Bunk O, Müller B . Nanostructure of healthy and caries-affected human teeth[J]. Nanomedicine, 2011,7(6):694-701.
doi: 10.1016/j.nano.2011.09.005 |
[6] |
Takahashi N, Nyvad B . Ecological hypojournal of dentin and root caries[J]. Caries Res, 2016,50(4):422-431.
doi: 10.1159/000447309 |
[7] |
Simón-Soro A, Guillen-Navarro M, Mira A . Metatranscriptomics reveals overall active bacterial composition in caries lesions[J]. J Oral Microbiol, 2014,6:25443.
doi: 10.3402/jom.v6.25443 |
[8] |
Preza D, Olsen I, Aas JA , et al. Bacterial profiles of root caries in elderly patients[J]. J Clin Microbiol, 2008,46(6):2015-2021.
doi: 10.1128/JCM.02411-07 |
[9] |
Chen L, Qin B, Du M , et al. Extensive description and comparison of human supra-gingival microbiome in root caries and health[J]. PLoS One, 2015,10(2):e0117064.
doi: 10.1371/journal.pone.0117064 |
[10] |
Marsh PD . Microbial ecology of dental plaque and its significance in health and disease[J]. Adv Dent Res, 1994,8(2):263-271.
doi: 10.1177/08959374940080022001 |
[11] |
Takahashi N, Nyvad B . Caries ecology revisited: microbial dynamics and the caries process[J]. Caries Res, 2008,42(6):409-418.
doi: 10.1159/000159604 |
[12] | Nyvad B, Kilian M . Microbiology of the early colonization of human enamel and root surfaces in vivo[J]. Scand J Dent Res, 1987,95(5):369-380. |
[13] |
Preza D, Olsen I, Willumsen T , et al. Microarray analysis of the microflora of root caries in elderly[J]. Eur J Clin Microbiol Infect Dis, 2009,28(5):509-517.
doi: 10.1007/s10096-008-0662-8 |
[14] |
Dame-Teixeira N, Parolo CC, Maltz M , et al. Actinomyces spp. gene expression in root caries lesions[J]. J Oral Microbiol, 2016,8:32383.
doi: 10.3402/jom.v8.32383 |
[15] | Hashimoto K, Sato T, Shimauchi H , et al. Profiling of dental plaque microflora on root caries lesions and the protein-denaturing activity of these bacteria[J]. Am J Dent, 2011,24(5):295-299. |
[16] |
Shen S, Samaranayake LP, Yip HK . Coaggregation profiles of the microflora from root surface caries lesions[J]. Arch Oral Biol, 2005,50(1):23-32.
doi: 10.1016/j.archoralbio.2004.07.002 |
[17] | de Oliveira Cordeiro JG . Experimental root surface caries in hamsters the development of the disease after inoculations of two types of cariogenic bacteria[J]. Bull Tokyo Med Dent Univ, 1995,42(3):83-103. |
[18] |
Badet C, Thebaud NB . Ecology of lactobacilli in the oral cavity: a review of literature[J]. Open Microbiol J, 2008,2:38-48.
doi: 10.2174/1874285800802010038 |
[19] |
Chhour KL, Nadkarni MA, Byun R , et al. Molecular analysis of microbial diversity in advanced caries[J]. J Clin Microbiol, 2005,43(2):843-849.
doi: 10.1128/JCM.43.2.843-849.2005 |
[20] |
He J, Tu Q, Ge Y , et al. Taxonomic and functional analyses of the supragingival microbiome from caries- affected and caries-free hosts[J]. Microb Ecol, 2018,75(2):543-554.
doi: 10.1007/s00248-017-1056-1 |
[21] |
Yang F, Zeng X, Ning K , et al. Saliva microbiomes distinguish caries-active from healthy human populations[J]. ISME J, 2012,6(1):1-10.
doi: 10.1038/ismej.2011.71 |
[22] |
Teng F, Yang F, Huang S , et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota[J]. Cell Host Microbe, 2015,18(3):296-306.
doi: 10.1016/j.chom.2015.08.005 |
[23] |
Wolff D, Frese C, Maier-Kraus T , et al. Bacterial biofilm composition in caries and caries-free subjects[J]. Caries Res, 2013,47(1):69-77.
doi: 10.1159/000344022 |
[24] |
Wang Y, Zhang J, Chen X , et al. Profiling of oral microbiota in early childhood caries using single-molecule real-time sequencing[J]. Front Microbiol, 2017,8:2244.
doi: 10.3389/fmicb.2017.02244 |
[25] |
Mantzourani M, Fenlon M, Beighton D . Association between Bifidobacteriaceae and the clinical severity of root caries lesions[J]. Oral Microbiol Immunol, 2009,24(1):32-37.
doi: 10.1111/omi.2008.24.issue-1 |
[26] |
Obata J, Takeshita T, Shibata Y , et al. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing[J]. PLoS One, 2014,9(8):e103712.
doi: 10.1371/journal.pone.0103712 |
[27] |
Zhou J, Jiang N, Wang S , et al. Exploration of human salivary microbiomes—insights into the novel characteristics of microbial community structure in caries and caries-free subjects[J]. PLoS One, 2016,11(1):e0147039.
doi: 10.1371/journal.pone.0147039 |
[28] |
Brailsford SR, Shah B, Simons D , et al. The predominant aciduric microflora of root-caries lesions[J]. J Dent Res, 2001,80(9):1828-1833.
doi: 10.1177/00220345010800091101 |
[29] | Beighton D, Ludford R, Clark DT , et al. Use of CHROMagar Candida medium for isolation of yeasts from dental samples[J]. J Clin Microbiol, 1995,33(11):3025-3027. |
[30] | Zaremba ML, Stokowska W, Klimiuk A , et al. Microorganisms in root carious lesions in adults[J]. Adv Med Sci, 2006,51(Suppl 1):237-240. |
[31] |
Shen S, Samaranayake LP, Yip HK , et al. Bacterial and yeast flora of root surface caries in elderly, ethnic Chinese[J]. Oral Dis, 2002,8(4):207-217.
doi: 10.1034/j.1601-0825.2002.01796.x |
[32] |
de Carvalho FG, Silva DS, Hebling J , et al. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries[J]. Arch Oral Biol, 2006,51(11):1024-1028.
doi: 10.1016/j.archoralbio.2006.06.001 |
[33] | Raja M, Hannan A, Ali K . Association of oral candidal carriage with dental caries in children[J]. Caries Res, 2010,44(3):272-276. |
[34] |
Yang XQ, Zhang Q, Lu LY , et al. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries[J]. Arch Oral Biol, 2012,57(8):1048-1053.
doi: 10.1016/j.archoralbio.2012.05.012 |
[35] |
Parahitiyawa NB, Samaranayake YH, Samaranayake LP , et al. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device[J]. APMIS, 2006,114(4):298-306.
doi: 10.1111/apm.2006.114.issue-4 |
[36] |
Thein ZM, Smaranayake YH, Smaranayake LP . Dietary sugars, serum and the biocide chlorhexidine digluconate modify the population and structural dyna-mics of mixed Candida albicans and Escherichia coli biofilms[J]. APMIS, 2007,115(11):1241-1251.
doi: 10.1111/apm.2007.115.issue-11 |
[37] |
Caroline de Abreu Brandi T, Portela MB, Lima PM , et al. Demineralizing potential of dental biofilm added with Candida albicans and Candida parapsilosis isolated from preschool children with and without caries[J]. Microb Pathog, 2016,100:51-55.
doi: 10.1016/j.micpath.2016.09.003 |
[38] |
Charone S, Portela MB, Martins KO , et al. Role of Candida species from HIV infected children in enamel caries lesions: an in vitro study[J]. J Appl Oral Sci, 2017,25(1):53-60.
doi: 10.1590/1678-77572016-0021 |
[39] | Klinke T, Klimm HW, Zahnerhaltung PF , et al. Induction of caries-like lesions by Candida albicans in an artificial mouth[J]. Int Poster J Dent Oral Med, 2003,5(4):200. |
[40] |
Klinke T, Guggenheim B, Klimm W , et al. Dental caries in rats associated with Candida albicans[J]. Caries Res, 2011,45(2):100-106.
doi: 10.1159/000324809 |
[41] |
Shirtliff ME, Peters BM, Jabra-Rizk MA . Cross-kingdom interactions: Candida albicans and bacteria[J]. FEMS Microbiol Lett, 2009,299(1):1-8.
doi: 10.1111/fml.2009.299.issue-1 |
[42] |
Bamford CV, d’Mello A, Nobbs AH , et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication[J]. Infect Immun, 2009,77(9):3696-3704.
doi: 10.1128/IAI.00438-09 |
[43] |
Morales DK, Hogan DA . Candida albicans interactions with bacteria in the context of human health and disease[J]. PLoS Pathog, 2010,6(4):e1000886.
doi: 10.1371/journal.ppat.1000886 |
[44] |
Diaz PI, Xie Z, Sobue T , et al. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model[J]. Infect Immun, 2012,80(2):620-632.
doi: 10.1128/IAI.05896-11 |
[45] |
Fox EP, Cowley ES, Nobile CJ , et al. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures[J]. Curr Biol, 2014,24(20):2411-2416.
doi: 10.1016/j.cub.2014.08.057 |
[46] |
Falsetta ML, Klein MI, Colonne PM , et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo[J]. Infect Immun, 2014,82(5):1968-1981.
doi: 10.1128/IAI.00087-14 |
[47] |
Hwang G, Marsh G, Gao L , et al. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans[J]. J Dent Res, 2015,94(9):1310-1317.
doi: 10.1177/0022034515592859 |
[48] |
Gregoire S, Xiao J, Silva BB , et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces[J]. Appl Environ Microbiol, 2011,77(18):6357-6367.
doi: 10.1128/AEM.05203-11 |
[49] |
Hwang G, Liu Y, Kim D , et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo[J]. PLoS Pathog, 2017,13(6):e1006407.
doi: 10.1371/journal.ppat.1006407 |
[50] |
Cavalcanti YW, Wilson M, Lewis M , et al. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces[J]. Biofouling, 2016,32(2):123-134.
doi: 10.1080/08927014.2015.1125472 |
[51] | Bowen WH, Koo H . Biology of Streptococcus mutans- derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms[J]. Caries Res, 2011,45(1):69-86. |
[52] |
He J, Kim D, Zhou X , et al. RNA-Seq reveals enhanced sugar metabolism in Streptococcus mutans co-cultured with Candida albicans within mixed-species biofilms[J]. Front Microbiol, 2017,8:1036.
doi: 10.3389/fmicb.2017.01036 |