Int J Stomatol ›› 2019, Vol. 46 ›› Issue (3): 326-332.doi: 10.7518/gjkq.2019007

• Reviews • Previous Articles     Next Articles

The microbial ecology of root caries

Qian Du1,Biao Ren2,Xuedong Zhou1,Xin Xu1()   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-10-22 Revised:2019-03-04 Online:2019-05-01 Published:2019-06-05
  • Contact: Xin Xu
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81771099);This study was supported by National Natural Science Foundation of China(81670978);Key Project for Frontier Research of Science and Technology Department of Sichuan Province(2016JY0006)


As a clinical subtype of dental caries, root caries is a polymicrobial infectious disease resulting from dysbiosis of the microbial ecology of the mouth. In this case, highly acidogenic/aciduric species are selectively enriched while less aciduric commensal residents are suppressed within the biofilm. This feed-forward imbalance in microbial equilibrium leads to a continuous decline in pH to the threshold below which tooth hard tissue demineralization occurs. Due to the histological features of tooth dentine and cementum, as well as the impact of both saliva and gingival groove liquid, the microbial etiology of root caries is relatively complex, including not only demineralization by bacterial acidification but also organic matrix degradation. The microorganisms within root caries lesions show high diversity, including large numbers of Gram-negative bacteria, anaerobic bacteria, and even fungi. This review summarizes the characteristic microorganisms of root caries from the perspective of microbial ecology to advance our understanding of root caries.

Key words: root caries, microbial ecology, Gram-negative bacteria, anaerobic bacteria, Candida albicans

CLC Number: 

  • R781.1


Tab 1

The characteristic microorganisms and their roles in root caries"

微生物 产酸 蛋白凝固及降解 自凝聚 共凝聚 其他
细菌 放线菌属[19,25] + + - +
乳杆菌属[19,25] + + + - 胶原特异性黏附
丙酸杆菌属[15] + + - -
普雷沃菌属[19,25] - + + +
口腔链球菌[9] - - - - 促进牙菌斑中IgA蛋白酶生成
双歧杆菌属[19,25] - - - -
欧氏菌属[26,27] - - - -
真菌 白色念珠菌[31,46-50] + + - - 与口腔微生物间交互作用
都柏林念珠菌[31] - - - -
光滑念珠菌[31] - - - -
[1] GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990- 2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017,390(10100):1211-1259.
doi: 10.1016/S0140-6736(17)32154-2
[2] Carvalho TS, Lussi A . Assessment of root caries lesion activity and its histopathological features[J]. Monogr Oral Sci, 2017,26:63-69.
doi: 10.1159/issn.0077-0892
[3] Damé-Teixeira N, Parolo CCF, Maltz M . Specificities of caries on root surface[J]. Monogr Oral Sci, 2017,26:15-25.
doi: 10.1159/issn.0077-0892
[4] Mayanagi G, Igarashi K, Washio J , et al. pH response and tooth surface solubility at the tooth/bacteria interface[J]. Caries Res, 2017,51(2):160-166.
doi: 10.1159/000454781
[5] Deyhle H, Bunk O, Müller B . Nanostructure of healthy and caries-affected human teeth[J]. Nanomedicine, 2011,7(6):694-701.
doi: 10.1016/j.nano.2011.09.005
[6] Takahashi N, Nyvad B . Ecological hypojournal of dentin and root caries[J]. Caries Res, 2016,50(4):422-431.
doi: 10.1159/000447309
[7] Simón-Soro A, Guillen-Navarro M, Mira A . Metatranscriptomics reveals overall active bacterial composition in caries lesions[J]. J Oral Microbiol, 2014,6:25443.
doi: 10.3402/jom.v6.25443
[8] Preza D, Olsen I, Aas JA , et al. Bacterial profiles of root caries in elderly patients[J]. J Clin Microbiol, 2008,46(6):2015-2021.
doi: 10.1128/JCM.02411-07
[9] Chen L, Qin B, Du M , et al. Extensive description and comparison of human supra-gingival microbiome in root caries and health[J]. PLoS One, 2015,10(2):e0117064.
doi: 10.1371/journal.pone.0117064
[10] Marsh PD . Microbial ecology of dental plaque and its significance in health and disease[J]. Adv Dent Res, 1994,8(2):263-271.
doi: 10.1177/08959374940080022001
[11] Takahashi N, Nyvad B . Caries ecology revisited: microbial dynamics and the caries process[J]. Caries Res, 2008,42(6):409-418.
doi: 10.1159/000159604
[12] Nyvad B, Kilian M . Microbiology of the early colonization of human enamel and root surfaces in vivo[J]. Scand J Dent Res, 1987,95(5):369-380.
[13] Preza D, Olsen I, Willumsen T , et al. Microarray analysis of the microflora of root caries in elderly[J]. Eur J Clin Microbiol Infect Dis, 2009,28(5):509-517.
doi: 10.1007/s10096-008-0662-8
[14] Dame-Teixeira N, Parolo CC, Maltz M , et al. Actinomyces spp. gene expression in root caries lesions[J]. J Oral Microbiol, 2016,8:32383.
doi: 10.3402/jom.v8.32383
[15] Hashimoto K, Sato T, Shimauchi H , et al. Profiling of dental plaque microflora on root caries lesions and the protein-denaturing activity of these bacteria[J]. Am J Dent, 2011,24(5):295-299.
[16] Shen S, Samaranayake LP, Yip HK . Coaggregation profiles of the microflora from root surface caries lesions[J]. Arch Oral Biol, 2005,50(1):23-32.
doi: 10.1016/j.archoralbio.2004.07.002
[17] de Oliveira Cordeiro JG . Experimental root surface caries in hamsters the development of the disease after inoculations of two types of cariogenic bacteria[J]. Bull Tokyo Med Dent Univ, 1995,42(3):83-103.
[18] Badet C, Thebaud NB . Ecology of lactobacilli in the oral cavity: a review of literature[J]. Open Microbiol J, 2008,2:38-48.
doi: 10.2174/1874285800802010038
[19] Chhour KL, Nadkarni MA, Byun R , et al. Molecular analysis of microbial diversity in advanced caries[J]. J Clin Microbiol, 2005,43(2):843-849.
doi: 10.1128/JCM.43.2.843-849.2005
[20] He J, Tu Q, Ge Y , et al. Taxonomic and functional analyses of the supragingival microbiome from caries- affected and caries-free hosts[J]. Microb Ecol, 2018,75(2):543-554.
doi: 10.1007/s00248-017-1056-1
[21] Yang F, Zeng X, Ning K , et al. Saliva microbiomes distinguish caries-active from healthy human populations[J]. ISME J, 2012,6(1):1-10.
doi: 10.1038/ismej.2011.71
[22] Teng F, Yang F, Huang S , et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota[J]. Cell Host Microbe, 2015,18(3):296-306.
doi: 10.1016/j.chom.2015.08.005
[23] Wolff D, Frese C, Maier-Kraus T , et al. Bacterial biofilm composition in caries and caries-free subjects[J]. Caries Res, 2013,47(1):69-77.
doi: 10.1159/000344022
[24] Wang Y, Zhang J, Chen X , et al. Profiling of oral microbiota in early childhood caries using single-molecule real-time sequencing[J]. Front Microbiol, 2017,8:2244.
doi: 10.3389/fmicb.2017.02244
[25] Mantzourani M, Fenlon M, Beighton D . Association between Bifidobacteriaceae and the clinical severity of root caries lesions[J]. Oral Microbiol Immunol, 2009,24(1):32-37.
doi: 10.1111/omi.2008.24.issue-1
[26] Obata J, Takeshita T, Shibata Y , et al. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing[J]. PLoS One, 2014,9(8):e103712.
doi: 10.1371/journal.pone.0103712
[27] Zhou J, Jiang N, Wang S , et al. Exploration of human salivary microbiomes—insights into the novel characteristics of microbial community structure in caries and caries-free subjects[J]. PLoS One, 2016,11(1):e0147039.
doi: 10.1371/journal.pone.0147039
[28] Brailsford SR, Shah B, Simons D , et al. The predominant aciduric microflora of root-caries lesions[J]. J Dent Res, 2001,80(9):1828-1833.
doi: 10.1177/00220345010800091101
[29] Beighton D, Ludford R, Clark DT , et al. Use of CHROMagar Candida medium for isolation of yeasts from dental samples[J]. J Clin Microbiol, 1995,33(11):3025-3027.
[30] Zaremba ML, Stokowska W, Klimiuk A , et al. Microorganisms in root carious lesions in adults[J]. Adv Med Sci, 2006,51(Suppl 1):237-240.
[31] Shen S, Samaranayake LP, Yip HK , et al. Bacterial and yeast flora of root surface caries in elderly, ethnic Chinese[J]. Oral Dis, 2002,8(4):207-217.
doi: 10.1034/j.1601-0825.2002.01796.x
[32] de Carvalho FG, Silva DS, Hebling J , et al. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries[J]. Arch Oral Biol, 2006,51(11):1024-1028.
doi: 10.1016/j.archoralbio.2006.06.001
[33] Raja M, Hannan A, Ali K . Association of oral candidal carriage with dental caries in children[J]. Caries Res, 2010,44(3):272-276.
[34] Yang XQ, Zhang Q, Lu LY , et al. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries[J]. Arch Oral Biol, 2012,57(8):1048-1053.
doi: 10.1016/j.archoralbio.2012.05.012
[35] Parahitiyawa NB, Samaranayake YH, Samaranayake LP , et al. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device[J]. APMIS, 2006,114(4):298-306.
doi: 10.1111/apm.2006.114.issue-4
[36] Thein ZM, Smaranayake YH, Smaranayake LP . Dietary sugars, serum and the biocide chlorhexidine digluconate modify the population and structural dyna-mics of mixed Candida albicans and Escherichia coli biofilms[J]. APMIS, 2007,115(11):1241-1251.
doi: 10.1111/apm.2007.115.issue-11
[37] Caroline de Abreu Brandi T, Portela MB, Lima PM , et al. Demineralizing potential of dental biofilm added with Candida albicans and Candida parapsilosis isolated from preschool children with and without caries[J]. Microb Pathog, 2016,100:51-55.
doi: 10.1016/j.micpath.2016.09.003
[38] Charone S, Portela MB, Martins KO , et al. Role of Candida species from HIV infected children in enamel caries lesions: an in vitro study[J]. J Appl Oral Sci, 2017,25(1):53-60.
doi: 10.1590/1678-77572016-0021
[39] Klinke T, Klimm HW, Zahnerhaltung PF , et al. Induction of caries-like lesions by Candida albicans in an artificial mouth[J]. Int Poster J Dent Oral Med, 2003,5(4):200.
[40] Klinke T, Guggenheim B, Klimm W , et al. Dental caries in rats associated with Candida albicans[J]. Caries Res, 2011,45(2):100-106.
doi: 10.1159/000324809
[41] Shirtliff ME, Peters BM, Jabra-Rizk MA . Cross-kingdom interactions: Candida albicans and bacteria[J]. FEMS Microbiol Lett, 2009,299(1):1-8.
doi: 10.1111/fml.2009.299.issue-1
[42] Bamford CV, d’Mello A, Nobbs AH , et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication[J]. Infect Immun, 2009,77(9):3696-3704.
doi: 10.1128/IAI.00438-09
[43] Morales DK, Hogan DA . Candida albicans interactions with bacteria in the context of human health and disease[J]. PLoS Pathog, 2010,6(4):e1000886.
doi: 10.1371/journal.ppat.1000886
[44] Diaz PI, Xie Z, Sobue T , et al. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model[J]. Infect Immun, 2012,80(2):620-632.
doi: 10.1128/IAI.05896-11
[45] Fox EP, Cowley ES, Nobile CJ , et al. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures[J]. Curr Biol, 2014,24(20):2411-2416.
doi: 10.1016/j.cub.2014.08.057
[46] Falsetta ML, Klein MI, Colonne PM , et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo[J]. Infect Immun, 2014,82(5):1968-1981.
doi: 10.1128/IAI.00087-14
[47] Hwang G, Marsh G, Gao L , et al. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans[J]. J Dent Res, 2015,94(9):1310-1317.
doi: 10.1177/0022034515592859
[48] Gregoire S, Xiao J, Silva BB , et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces[J]. Appl Environ Microbiol, 2011,77(18):6357-6367.
doi: 10.1128/AEM.05203-11
[49] Hwang G, Liu Y, Kim D , et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo[J]. PLoS Pathog, 2017,13(6):e1006407.
doi: 10.1371/journal.ppat.1006407
[50] Cavalcanti YW, Wilson M, Lewis M , et al. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces[J]. Biofouling, 2016,32(2):123-134.
doi: 10.1080/08927014.2015.1125472
[51] Bowen WH, Koo H . Biology of Streptococcus mutans- derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms[J]. Caries Res, 2011,45(1):69-86.
[52] He J, Kim D, Zhou X , et al. RNA-Seq reveals enhanced sugar metabolism in Streptococcus mutans co-cultured with Candida albicans within mixed-species biofilms[J]. Front Microbiol, 2017,8:1036.
doi: 10.3389/fmicb.2017.01036
[1] Yang Sirui,Ren Biao,Peng Xian,Xu Xin. Research progress on drug synergism with fluconazole in fluconazole-resistant Candida albicans [J]. Int J Stomatol, 2022, 49(5): 511-520.
[2] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[3] Liu Qianxi,Wu Jiayi,Ren Biao,Huang Ruijie. Research progress on the interactions between Enterococcus faecalis and other oral microorganisms [J]. Int J Stomatol, 2022, 49(3): 290-295.
[4] Huang Peiqing,Peng Xian,Xu Xin. Volatile sulfur compounds and its role in the management of intra-oral halitosis [J]. Int J Stomatol, 2021, 48(5): 592-599.
[5] Li Shijia,Chen Qiuyu,Zou Jing,Huang Ruijie. Effect of nicotine on the growth of oral bacteria in single or mixed species [J]. Int J Stomatol, 2021, 48(3): 305-311.
[6] Xiong Kaixin,Zou Ling. Correlation between Candida albicans, Actinomyces viscosus, and root caries [J]. Int J Stomatol, 2021, 48(2): 187-191.
[7] Li Fan,Zhang Lijuan,Tan Kaixuan,Zhang Ying,Lu Jie,Li Shanshan,Yang Fang. Antimicrobial effect of chlorhexidine on Candida albicans in vitro according to D2O-labeled single-cell Raman micro-spectroscopy [J]. Int J Stomatol, 2021, 48(1): 35-40.
[8] Hu Yao,Cheng Lei,Guo Qiang,Ren Biao. Research progress on cross-kingdom interactions between Candida albicans and common oral bacteria [J]. Int J Stomatol, 2019, 46(6): 663-669.
[9] Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi. Research progress on the mechanism of Candida albicans in oral carcinogenesis [J]. Int J Stomatol, 2019, 46(6): 705-710.
[10] Feng Jin,Wu Hongkun. Research progress on antibacterial dental materials in the treatment of root caries [J]. Int J Stomatol, 2019, 46(4): 475-480.
[11] Yilong Hao,Yu Zhou,Qianming Chen. Research progress on the risk factors of median rhomboid glossitis [J]. Int J Stomatol, 2019, 46(3): 333-338.
[12] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
[13] Sun Qingzhong1, Ye Honglin2. Distribution and antimicrobial susceptibility of subgingival pathogenic bacteria in 68 patients with chronic periodontitis [J]. Inter J Stomatol, 2013, 40(6): 724-726.
[14] Yang Xiaoqiong1, Zou Jing2.. Researches of oral microbiota associated with early-childhood caries [J]. Inter J Stomatol, 2011, 38(4): 455-459.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .