Int J Stomatol ›› 2021, Vol. 48 ›› Issue (1): 35-40.doi: 10.7518/gjkq.2021019

• Original Articles • Previous Articles     Next Articles

Antimicrobial effect of chlorhexidine on Candida albicans in vitro according to D2O-labeled single-cell Raman micro-spectroscopy

Li Fan1,2,Zhang Lijuan1,2,Tan Kaixuan2,3,Zhang Ying1,Lu Jie2,3,Li Shanshan1,Yang Fang1,2()   

  1. 1. School of Stomatology, Qingdao University, Qingdao 266003, China
    2. Stomatology Center, Qingdao Municipal Hos-pital, Qingdao 266071, China
    3. School of Stomatology, Dalian Medical University, Dalian 116044, China
  • Received:2020-04-05 Revised:2020-09-28 Online:2021-01-01 Published:2021-01-20
  • Contact: Fang Yang
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81670979);This study was supported by National Natural Science Foundation of China(31600099)


Objective To evaluate the universality of D2O-labeled single-cell Raman micro-spectroscopy and the bacteriostatic effect of chlorhexidine (CHX) on Candida albicans (C. albicans) in vitro. Methods The universality of D2O-labeled single-cell Raman micro-spectroscopy was investigated by exploring the growth of C. albicans under various doses of D2O and the regularity of D2O intake by C. albicans on the basis of the temporal change in OD600 and C-D ratio, respectively. Furthermore, we determined the effects of inhibiting the growth and CHX metabolism on C. albicans according to minimum inhibitory concentration (MIC) and minimum inhibitory concentration based on metabolic activity (MIC-MA) values, using broth dilution test and D2O-labeled single-cell Raman micro-spectroscopy, respectively. Results The growth of C. albicans was not significantly affected at concentrations below or equal to 30% D2O, and C. albicans can actively metabolize D2O, as indicated by Raman micro-spectroscopy results. Moreover, the C-D ratio of C. albicans at the stationary phase was positively correlated with D2O concentration. The MIC and MIC-MA of CHX were 4 and 8 μg·mL -1, respectively. Under the MIC, the growth of C. albicans was completely inhibited, but metabolic activity was active. Metabolic activity can be inhibited only when the concentration of 2×MIC was reached.Conclusion D2O- labeled single-cell Raman micro-spectroscopy is suitable for evaluating the metabolism activity of C. albicans. The commonly used concentration CHX in clinical practice effectively inhibits the growth and even the metabolism of C. albicans.

Key words: Candida albicans, chlorhexidine, heavy water, single cell, Raman micro-spectroscopy

CLC Number: 

  • R780.2


Fig 1

Temporal change of OD600 for Candida albicans CICC32380 under various quality score D2O"

Fig 2

Change of single cell Raman spectrum for Candida albicans CICC32380 under various quality score D2O"

Fig 3

There was a linear relationship between the C-D ratio of Candida albicans CICC32380 at stable stage and D2O concentration followed by single cell Raman spectrum measurement"

Fig 4

Temporal change of single cell Raman spectrum for Candida albicans CICC32380 under 30% D2O"

Fig 5

Temporal change of C-D ratio curve and growth curve of Candida albicans CICC32380 under 30% D2O"

Tab 1

Measurement of MIC for Candida albicans CICC32380 under CHX"

CHX质量浓度/(μg·mL-1 ΔOD600
空白对照组 1.33×10-3±9.43×10-4
0(阴性对照组) 1.49×10-1±1.48×10-2
1 1.37×10-1±3.74×10-3
2 1.15×10-1±4.32×10-3
4 1.00×10-3±1.41×10-3
8 3.33×10-4±4.71×10-4
16 3.33×10-4±1.25×10-4
32 1.00×10-3±0.00

Tab 2

Measurement of MIC-MA for Candida albicans CICC32380 under CHX"

CHX质量浓度/(μg·mL-1 ΔC-D ratio
0(阴性对照组) 6.54×10-2±4.04×10-3
2 6.63×10-2±4.80×10-3
4 7.14×10-2±4.45×10-3
8 -8.90×10-4±5.67×10-4
12 -9.12×10-3±2.84×10-3

Fig 6

Measurement of MIC-MA under CHX for Candida albicans CICC32380"

Fig 7

Temporal dynamics of the C-D ratio under various quality score CHX"

[1] 李帆, 姜晓东, 张颖 , 等. 不同抑菌剂对变形链球菌毒力因素影响的研究进展[J]. 临床口腔医学杂志, 2019,35(11):701-703.
Li F, Jiang XD, Zhang Y , et al. Research progress on the influence of different bacteriostatic agents on the virulence factors of Streptococcus mutans[J]. J Clin Stomatol, 2019,35(11):701-703.
[2] 吴辰, 龚怡, 杨圣辉 , 等. 0.1%西吡氯铵含漱液对牙外伤纤维夹板固定术后菌斑形成的抑制作用[J]. 中国微生态学杂志, 2012,24(10):896-897, 900.
Wu C, Gong Y, Yang SH , et al. The effect of mouth rinse containing 0.1% cetylpyridinium chloride in the inhibition of dental plague formation in fiber splinting teeth[J]. Chin J Microecol, 2012,24(10):896-897, 900.
[3] Mothibe JV, Patel M . Pathogenic characteristics of Candida albicans isolated from oral cavities of denture wearers and cancer patients wearing oral prostheses[J]. Microb Pathog, 2017,110:128-134.
[4] 申杰, 周文明 . 口腔真菌感染的研究进展[J]. 国际口腔医学杂志, 2013,40(5):619-624.
Shen J, Zhou WM . Research progress on oral fungal infections[J]. Int J Stomatol, 2013,40(5):619-624.
[5] Sakko M, Tjäderhane L, Rautemaa-Richardson R . Microbiology of root canal infections[J]. Prim Dent J, 2016,5(2):84-89.
[6] Balouiri M, Sadiki M, Ibnsouda SK . Methods for in vitro evaluating antimicrobial activity: a review[J]. J Pharm Anal, 2016,6(2):71-79.
[7] Berry D, Mader E, Lee TK , et al. Tracking heavy water (D2O) incorporation for identifying and sor-ting active microbial cells[J]. Proc Natl Acad Sci U S A, 2015,112(2):E194-E203.
[8] Tao YF, Wang Y, Huang S , et al. Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell Raman microspectroscopy[J]. Anal Chem, 2017,89(7):4108-4115.
[9] Thomson JF . Physiological effects of D2O in mammals[J]. Ann N Y Acad Sci, 1960,84:736-744.
[10] Katz JJ, Crespi HL . Deuterated organisms: cultivation and uses[J]. Science, 1966,151(3715):1187-1194.
pmid: 5325694
[11] Tong ZC, Zhou L, Li J , et al. In vitro evaluation of the antibacterial activities of MTAD in combination with nisin against Enterococcus faecalis[J]. J Endod, 2011,37(8):1116-1120.
[12] Ferguson JW, Hatton JF, Gillespie MJ . Effectiveness of intracanal irrigants and medications against the yeast candida albicans[J]. J Endod, 2002,28(2):68-71.
[13] Estrela CR, Estrela C, Reis C , et al. Control of microorganisms in vitro by endodontic irrigants[J]. Braz Dent J, 2003,14(3):187-192.
pmid: 15057395
[14] Bergkessel M, Basta DW, Newman DK . The phy-siology of growth arrest: uniting molecular and environmental microbiology[J]. Nat Rev Microbiol, 2016,14(9):549-562.
pmid: 27510862
[15] Manina G, Dhar N , McKinney JD. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms[J]. Cell Host Microbe, 2015,17(1):32-46.
[16] 谭亚琦, 何焱玲 . 细胞增殖的检测方法[J]. 医学研究杂志, 2016,45(12):5-8.
Tan YQ, He YL . Detection of cell proliferation[J]. J Med Res, 2016,45(12):5-8.
[17] Wang Y, Song YZ, Tao YF , et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level[J]. Anal Chem, 2016,88(19):9443-9450.
[18] Potma EO, de Boeij WP, van Haastert PJM , et al. Real-time visualization of intracellular hydrodyna-mics in single living cells[J]. PNAS, 2001,98(4):1577-1582.
[19] Bernardi A, Teixeira CS . The properties of chlorhexi-dine and undesired effects of its use in endodontics[J]. Quintessence Int, 2015,46(7):575-582.
[1] Wang Lüya,Zhang Jingxin,Lin Jie.. Postoperative infection control effect of povidone iodine and chlorhexidine: a systematic review and analysis [J]. Int J Stomatol, 2023, 50(4): 438-444.
[2] Yang Sirui,Ren Biao,Peng Xian,Xu Xin. Research progress on drug synergism with fluconazole in fluconazole-resistant Candida albicans [J]. Int J Stomatol, 2022, 49(5): 511-520.
[3] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[4] Liu Qianxi,Wu Jiayi,Ren Biao,Huang Ruijie. Research progress on the interactions between Enterococcus faecalis and other oral microorganisms [J]. Int J Stomatol, 2022, 49(3): 290-295.
[5] Xiong Kaixin,Zou Ling. Correlation between Candida albicans, Actinomyces viscosus, and root caries [J]. Int J Stomatol, 2021, 48(2): 187-191.
[6] Hu Yao,Cheng Lei,Guo Qiang,Ren Biao. Research progress on cross-kingdom interactions between Candida albicans and common oral bacteria [J]. Int J Stomatol, 2019, 46(6): 663-669.
[7] Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi. Research progress on the mechanism of Candida albicans in oral carcinogenesis [J]. Int J Stomatol, 2019, 46(6): 705-710.
[8] Qian Du,Biao Ren,Xuedong Zhou,Xin Xu. The microbial ecology of root caries [J]. Int J Stomatol, 2019, 46(3): 326-332.
[9] Yilong Hao,Yu Zhou,Qianming Chen. Research progress on the risk factors of median rhomboid glossitis [J]. Int J Stomatol, 2019, 46(3): 333-338.
[10] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
[11] CHEN Lin, LIU Lei.. Evidence -based casuistics of preventing dry socket using Chlorhexidine [J]. Inter J Stomatol, 2010, 37(5): 534-536.
[12] QIU Yu-lei, ZHOU Xue-dong. Review: Recent studies on the antibacterial performance of glass ionomer cement i [J]. Inter J Stomatol, 2009, 36(6): 679-681.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .