Int J Stomatol ›› 2025, Vol. 52 ›› Issue (3): 349-357.doi: 10.7518/gjkq.2025046

• Original Articles • Previous Articles    

Promotion of mandibular defect healing through the regulation of osteogenic and angiogenic functions by sirtuin 1

Zhikai Liu1(),Hanghang Liu2,Shibo Liu1,Bolun Li1,Yao Liu1,En Luo1()   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic and Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Emergency, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-07-19 Revised:2024-12-01 Online:2025-05-01 Published:2025-04-30
  • Contact: En Luo E-mail:liuzhikai2015@qq.com;luoen521125@sina.com
  • Supported by:
    National Natural Science Foundation of China(82370932);Key Research and Development Project of Sichuan Province(2024YFFK0204);Natural Science Foundation Youth Project of Sichuan Province(2023NSFSC1512)

Abstract:

Objective This study aims to investigate the effect of sirtuin 1 (SIRT1) on osteogenic and angiogenic functions in mice under in vivo and in vitro conditions, as well as its effect on mandibular defect healing. Methods SIRT1 activators and inhibitors were used to intervene in MC3T3-E1 cells and mandibular defects in mice. Various methods, including cell counting kit-8 (CCK-8) assay, real-time quantitative polymerase chain reaction, Western blot, alkaline phosphatase staining, and immunofluorescence staining, were employed to study the influence of SIRT1 on the expression of osteogenic and angiogenic factors in MC3T3-E1 cells, as well as the healing and osteogenic and angiogenic functions of mandibular defects in mice. Results In in vitro experiments, the activation of SIRT1 promo-ted the expression of osteogenic and angiogenic factors in MC3T3-E1 cells. In in vivo experiments, SIRT1 activation facilitated the hea-ling of mandibular defects and enhanced the osteogenic and angiogenic functions of the mandibular defects. Conversely, the inhibition of SIRT1 activity suppressed the aforementioned processes. Conclusion SIRT1 can promote the healing of mandibular defects by regulating the osteogenic and angiogenic functions in mice.

Key words: sirtuin 1, angiogenesis, mandibular defect, bone regeneration

CLC Number: 

  • R782

TrendMD: 

Tab 1

Primer sequences of osteogenesis and angiogenesis-related genes"

基因引物序列F(5’-3’)引物序列R(5’-3’)
ALPCCAACTCTTTTGTGCCAGAGAGGCTACATTGGTGTTGAGCTTTT
Runx2TTCAACGATCTGAGATTTGTGGGGGATGAGGAATGCGCCCTA
VEGFCTGCCGTCCGATTGAGACCCCCCTCCTTGTACCACTGTC
Slit3TGCCCCACCAAGTGTACCTGGCCAGCGAAGTCCATTTTG
GAPDHAGGTCGGTGTGAACGGATTTGTGTAGACCATGTAGTTGAGGTCA

Fig 1

Effects of SRT1720 and EX527 on proliferation of MC3T3-E1 cells"

Fig 2

The effects of SIRT1 activators and inhibitors on the expression of osteogenic and angiogenic factors in MC3T3-E1 cells at 3 days"

Fig 3

The effects of SIRT1 activators and inhibitors on the expression of osteogenic and angiogenic factors in MC3T3-E1 cells at 7 days"

Fig 4

Effect of SIRT1 activators and inhibitors on ALP staining of MC3T3-E1 cells at 7 days"

Fig 5

Effect of SIRT1 activator and inhibitor on mandibular defect healing at 7 days"

Fig 6

Effects of SIRT1 activators and inhibitors on the expression of osteogenic and angiogenic factors in mandibular defects at 7 days"

1 Di Maggio N, Banfi A. The osteo-angiogenic signa-ling crosstalk for bone regeneration: harmony out of complexity[J]. Curr Opin Biotechnol, 2022, 76: 102750.
2 Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration[J]. Bone, 2015, 70: 19-27.
3 Stucker S, Chen JY, Watt FE, et al. Bone angiogenesis and vascular niche remodeling in stress, aging, and diseases[J]. Front Cell Dev Biol, 2020, 8: 602269.
4 Shen JJ, Sun Y, Liu XZ, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteoge-nesis via Wnt/β-catenin signaling[J]. Stem Cell Res Ther, 2021, 12(1): 415.
5 Liu XN, Zhang PL, Gu Y, et al. Type H vessels: functions in bone development and diseases[J]. Front Cell Dev Biol, 2023, 11: 1236545.
6 Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compoun-ds[J]. Nat Rev Mol Cell Biol, 2016, 17(11): 679-690.
7 石玉, 尹贝, 李鑫, 等. 表观遗传和代谢调控间充质干细胞成骨分化的研究进展[J]. 生物医学转化, 2023, 4(2): 57-71.
Shi Y, Yin B, Li X, et al. Research progress on the epigenetic and metabolic regulation on osteogenesis of MSCs[J]. Biomed Transform, 2023, 4(2): 57-71.
8 Wu QJ, Zhang TN, Chen HH, et al. The sirtuin family in health and disease[J]. Signal Transduct Target Ther, 2022, 7(1): 402.
9 Zhang WJ, Huang QB, Zeng ZH, et al. Sirt1 inhibits oxidative stress in vascular endothelial cells[J]. O-xid Med Cell Longev, 2017, 2017: 7543973.
10 Wang H, Hu ZX, Wu J, et al. Sirt1 promotes osteogenic differentiation and increases alveolar bone mass via Bmi1 activation in mice[J]. J Bone Miner Res, 2019, 34(6): 1169-1181.
11 李明哲, 罗国厂, 张仲博, 等. 虎杖苷促进大鼠骨质疏松性骨折的作用及对SIRT1/FoxO1信号通路的影响[J]. 中国骨质疏松杂志, 2023, 29(8): 1154-1159.
Li MZ, Luo GC, Zhang ZB, et al. The effect of polydatin on promoting osteoporotic fracture healing in rats and its effect on SIRT1/FoxO1 signaling pathway[J]. Chin J Osteoporos, 2023, 29(8): 1154-1159.
12 Zhang JK, Pan J, Jing W. Motivating role of type H vessels in bone regeneration[J]. Cell Prolif, 2020, 53(9): e12874.
13 Xu R, Yallowitz A, Qin A, et al. Targeting skeletal endothelium to ameliorate bone loss[J]. Nat Med, 2018, 24(6): 823-833.
14 Kim BJ, Lee YS, Lee SY, et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation[J]. J Clin Invest, 2018, 128(4): 1429-1441.
15 张思钰, 舒晴, 贾绍辉, 等. 组蛋白乙酰化对间充质干细胞成骨分化影响机制的研究[J]. 中国骨质疏松杂志, 2023, 29(2): 232-236, 247.
Zhang SY, Shu Q, Jia SH, et al. Research progress on the mechanism of histone acetylation on osteogenic differentiation of mesenchymal stem cells[J]. Chin J Osteoporos, 2023, 29(2): 232-236, 247.
16 Lemieux ME, Yang X, Jardine K, et al. The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals[J]. Mech Ageing Dev, 2005, 126(10): 1097-1105.
17 Louvet L, Leterme D, Delplace S, et al. Sirtuin 1 deficiency decreases bone mass and increases bone marrow adiposity in a mouse model of chronic energy deficiency[J]. Bone, 2020, 136: 115361.
18 Simic P, Zainabadi K, Bell E, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deace-tylating β-catenin[J]. EMBO Mol Med, 2013, 5(3): 430-440.
19 Domazetovic V, Marcucci G, Falsetti I, et al. Blueberry juice antioxidants protect osteogenic activity against oxidative stress and improve long-term activation of the mineralization process in human osteoblast-like SaOS-2 cells: involvement of SIRT1[J]. Antioxidants, 2020, 9(2): 125.
20 Das A, Huang GX, Bonkowski MS, et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging[J]. Cell, 2019, 176(4): 944-945.
21 Lipphardt M, Dihazi H, Müller GA, et al. Fibroge-nic secretome of sirtuin 1-deficient endothelial cells: Wnt, Notch and glycocalyx rheostat[J]. Front Phy-siol, 2018, 9: 1325.
22 Tombran-Tink J, Barnstable CJ. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone[J]. Biochem Biophys Res Commun, 2004, 316(2): 573-579.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[3] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[4] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[5] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[6] Qin Siwen,Liao Li.. Strategies of vascularization in dental pulp regeneration [J]. Int J Stomatol, 2022, 49(3): 272-282.
[7] Li Yanfei,Zhang Xinchun. Research progress on the dentin bone repair material [J]. Int J Stomatol, 2022, 49(2): 197-203.
[8] Liu Jiacheng,Meng Zhaosong,Li Hongjie,Sui Lei. The role of follistatin in oral and maxillofacial development and its therapeutic application prospect [J]. Int J Stomatol, 2021, 48(5): 556-562.
[9] Zhao Wenjun,Chen Yu. Research progress on periodontal functional gradient membrane for guided tissue/bone regeneration [J]. Int J Stomatol, 2021, 48(4): 391-397.
[10] Zhou Feng,Chen Ye,Chen Chen,Zhang Yining,Geng Ruiman,Liu Ji. Mechanism of sirtuin 1 in regulating periodontitis [J]. Int J Stomatol, 2021, 48(3): 341-346.
[11] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[12] Zhao Binbin,Zhong Weijian,Ma Guowu. Research progress on dentin as bone transplantation material [J]. Int J Stomatol, 2021, 48(1): 82-89.
[13] Ma Kai,Li Hao,Zhao Hongmei,Wang Yongliang,Liu Jie,Bai Na. Effects of inorganic bovine bone treated with low temperature argon-oxygen plasma on the adhesion, proliferation, and differentiation of MC3T3-E1 cells [J]. Int J Stomatol, 2020, 47(3): 278-285.
[14] Zhu Chenyou, Wei Shimin, Wang Yuanjing, Wu Yingying.. Research progress on macrophage in bone tissue repair [J]. Inter J Stomatol, 2018, 45(4): 444-448.
[15] Liu Shuang, Li Shu.. The effect of epigenetics and its regulation on periodontal disease [J]. Inter J Stomatol, 2017, 44(5): 523-527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!