Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (5): 523-527.doi: 10.7518/gjkq.2017.05.006

• Periodontitis • Previous Articles     Next Articles

The effect of epigenetics and its regulation on periodontal disease

Liu Shuang, Li Shu.   

  1. Dept. of Periodontics, Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
  • Received:2016-11-23 Revised:2017-05-26 Online:2017-09-01 Published:2017-09-01

Abstract: Epigenetics is defined as not involved in the change of the DNA sequence, but through mitosis and meiosis of the genetic changes in the genetics of the field, and its regulatory mechanisms include DNA methylation, histone modification, chromatin remodeling and non-encoding RNA regulation. The pathogeny of periodontal disease is complex, and it is difficult to achieve functional regeneration of alveolar bone. Epigenetic plays an important role in the development of inflammation and the promotion of bone regeneration. It will be an important research field in the future and have important clinical significance to prevent the occurrence of periodontal disease and make the functional regeneration of alveolar bone possible from the perspective of the epigenetic and its regulation.

Key words: epigenetics, periodontics, alveolar bone regeneration

CLC Number: 

  • R781.4

TrendMD: 
[1] 金洁琪, 吴红崑. 肥胖与口腔健康关系的研究[J]. 华西口腔医学杂志, 2015, 33(4):428-430.
Jin JQ, Wu HK. Relation between obesity and oral health[J]. West Chin J Stomatol, 2015, 33(4):428- 430.
[2] Offenbacher S, Barros SP, Beck JD. Rethinking periodontal inflammation[J]. J Periodontol, 2008, 79 (8 Suppl):1577-1584.
[3] Perri R, Nares S, Zhang S, et al. MicroRNA modu-lation in obesity and periodontitis[J]. J Dent Res, 2012, 91(1):33-38.
[4] Zhang S, Barros SP, Niculescu MD, et al. Alteration of PTGS2 promoter methylation in chronic periodon-titis[J]. J Dent Res, 2010, 89(2):133-137.
[5] Feng P, Wang X, Casado PL, et al. Genome wide association scan for chronic periodontitis implicates novel locus[J]. BMC Oral Health, 2014, 14:84.
[6] Cencioni C, Spallotta F, Martelli F, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases[J]. Int J Mol Sci, 2013, 14(9):17643- 17663.
[7] Ohi T, Uehara Y, Takatsu M, et al. Hypermethylation of CpGs in the promoter of the COL1A1 gene in the aged periodontal ligament[J]. J Dent Res, 2006, 85 (3):245-250.
[8] 赵金璇, 王芳, 徐峥嵘, 等. 表观遗传调控pre-mRNA的选择性剪接[J]. 遗传, 2014, 36(3):248- 255.
Zhao JX, Wang F, Xu ZR, et al. The epigenetic effect on pre-mRNA alternative splicing[J]. Hereditas, 2014, 36(3):248-255.
[9] Kargul J, Laurent GJ. Bioenergetic dysfunction in disease[J]. Int J Biochem Cell Biol, 2013, 45(1):1.
[10] Schulz S, Immel UD, Just L, et al. Epigenetic charac-teristics in inflammatory candidate genes in aggressive periodontitis[J]. Hum Immunol, 2016, 77(1):71-75.
[11] 刘昕訸, 张彦洁, 罗茂财, 等. 固有免疫细胞及其模式识别受体与表观遗传学调控研究进展[J]. 生命科学, 2014, 26(8):846-851.
Liu XH, Zhang YJ, Luo MC, et al. Research progress in regulation of innate immune cells and pattern re-cognition receptors by epigenetics[J]. Chin Bulle Life Sci, 2014, 26(8):846-851.
[12] Andia DC, de Oliveira NF, Casarin RC, et al. DNA methylation status of the IL8 gene promoter in ag-gressive periodontitis[J]. J Periodontol, 2010, 81(9): 1336-1341.
[13] Kikuchi S, Yamada D, Fukami T, et al. Hyperme-thylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in pri-mary nonsmall cell lung carcinoma[J]. Cancer, 2006, 106(8):1751-1758.
[14] He Z, Wang X, Deng Y, et al. Epigenetic regulation of Thy-1 gene expression by histone modification is involved in lipopolysaccharide-induced lung fibro-blast proliferation[J]. J Cell Mol Med, 2013, 17(1): 160-167.
[15] Ogbomo H, Michaelis M, Kreuter J, et al. Histone deacetylase inhibitors suppress natural killer cell cytolytic activity[J]. FEBS Lett, 2007, 581(7):1317- 1322.
[16] Tang G. siRNA and miRNA: an insight into RISCs [J]. Trends Biochem Sci, 2005, 30(2):106-114.
[17] Wu CT, Morris JR. Genes, genetics, and epigenetics: a correspondence[J]. Science, 2001, 293(5532):1103- 1105.
[18] Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics[J]. Nucleic Acids Res, 2008, 36(Database issue):D154-D158.
[19] Turner ML, Schnorfeil FM, Brocker T. MicroRNAs regulate dendritic cell differentiation and function[J]. J Immunol, 2011, 187(8):3911-3917.
[20] Leong JW, Sullivan RP, Fehniger TA. Natural killer cell regulation by microRNAs in health and disease [J]. J Biomed Biotechnol, 2012, 2012:632329.
[21] Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human den-dritic cell differentiation[J]. Science, 2014, 344 (6181):310-313.
[22] de Faria Amormino SA, Arão TC, Saraiva AM, et al. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis[J]. Hum Immunol, 2013, 74(9):1231-1236.
[23] Xia M, Liu J, Wu X, et al. Histone methyltransferase Ash1l suppresses interleukin-6 production and in-flammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20[J]. Immunity, 2013, 39(3):470-481.
[24] Rapicavoli NA, Qu K, Zhang J, et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics[J]. Elife, 2013, 2:e00762.
[25] Larsson L, Castilho RM, Giannobile WV. Epigene-tics and its role in periodontal diseases: a state-of-the-art review[J]. J Periodontol, 2015, 86(4):556- 568.
[26] Drury JL, Chung WO. DNA methylation differen-tially regulates cytokine secretion in gingival epi-thelia in response to bacterial challenges[J]. Pathog Dis, 2015, 73(2):1-6.
[27] Schoolmeesters A, Eklund T, Leake D, et al. Func-tional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells[J]. PLoS One, 2009, 4(5):e5605.
[28] Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development[J]. DNA Cell Biol, 2007, 26(4):219-225.
[29] 陆细红, 邓敏, 贺洪辉, 等. miR-125b通过靶向抑制Smad4调控骨髓间充质干细胞成骨分化[J]. 中南大学学报(医学版), 2013, 38(4):341-346.
Lu XH, Deng M, He HH, et al. miR-125b regulates osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting Smad4[J]. J Central South Univ(Med Sci), 2013, 38(4):341-346.
[30] Baglìo SR, Devescovi V, Granchi D, et al. Micro-RNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic diffe-rentiation reveals Osterix regulation by miR-31[J]. Gene, 2013, 527(1):321-331.
[31] Matysiak M, Fortak-Michalska M, Szymanska B, et al. MicroRNA-146a negatively regulates the im-munoregulatory activity of bone marrow stem cells by targeting prostaglandin E 2 synthase-2[J]. J Im-munol, 2013, 190(10):5102-5109.
[32] Su X, Liao L, Shuai Y, et al. MiR-26a functions op-positely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway[J]. Cell Death Dis, 2015, 6(8):e1851.
[33] 王海鹏, 高杰, 张小平, 等. miR-30a-5P在人骨髓间充质干细胞向成骨细胞分化过程中的生物学功能及验证[J]. 中国医药导报, 2011, 8(16):23-26.
Wang HP, Gao J, Zhang XP, et al. Function expre-ssion and verification of human miR-30a-5p in the inducing hbmscs into osteoblasts[J]. Chin Med He-rald , 2011, 8(16):23-26.
[34] Grover V, Kapoor A, Malhotra R, et al. Epigenetics and periodontal disease: hope to tame the untameable [J]. Curr Gene Ther, 2014, 14(6):473-481.
[35] Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response[J]. Perio-dontol 2000, 2014, 64(1):95-110.
[36] 周巍, 赵春晖, 梅陵宣. 骨保护素基因修饰联合细胞移植技术促进牙周组织再生的实验研究[J]. 华西口腔医学杂志, 2010, 28(3):324-329.
Zhou W, Zhao CH, Mei LX. Effect of the compound of poly lactic-co-glycolic acid and bone marrow stromal cells modified by osteoprotegerin gene on the periodontal regeneration in Beagle dog perio-dontal defects[J]. West Chin J Stomatol, 2010, 28(3): 324-329.
[37] Lod S, Johansson T, Abrahamsson KH, et al. The influence of epigenetics in relation to oral health[J]. Int J Dent Hyg, 2014, 12(1):48-54.
[1] Cao Zhengguo. Periodontal considerations in prosthetic dentistry [J]. Int J Stomatol, 2022, 49(1): 1-11.
[2] Ma Xiaofang,Huang Yongqing,Shi Bing,Ma Jian. Application of twin model in etiology of cleft lip with or without cleft palate [J]. Int J Stomatol, 2021, 48(5): 512-519.
[3] Wu Jielin,Gao Ying. Application progress on free soft-tissue grafts harvested from palatal mucosa [J]. Int J Stomatol, 2020, 47(6): 686-692.
[4] Zhou Chen, Ling Junqi. Epigenetics in tooth development and its implication in tooth regeneration [J]. Inter J Stomatol, 2016, 43(3): 318-324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .