Int J Stomatol ›› 2024, Vol. 51 ›› Issue (6): 763-771.doi: 10.7518/gjkq.2024096

• Reviews • Previous Articles    

Research progress of absent in melanoma 2 inflammasome in periodontitis and diabetes

Rui Chen(),Zhen Fan,Chunbo Hao()   

  1. School of Stomatology, Hainan Medical University, Haikou 571199, China
  • Received:2024-01-05 Revised:2024-05-30 Online:2024-11-01 Published:2024-11-04
  • Contact: Chunbo Hao E-mail:2805904440@qq.com;17573061@qq.com
  • Supported by:
    Key R & D Projects in Hainan Province(ZDYF2022SHF2017);Key R & D Program for Science and Technology Cooperation Project in Hainan Province(ZDYF2019216);Scientific Research Project of Hainan Higher Education Institutions(Hnky2019ZD-22);Hainan Province Higher Education and Teaching Reform Research Project(Hnjg2023ZD-29)

Abstract:

The absent in melanoma 2 (AIM2) inflammasome is a large molecular protein complex composed of AIM2, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and cysteine-containing aspartate-specific protease-1 (Caspase-1). Upon activation, it can release pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), as well as induce pyroptosis (a programmed cell death), thus playing a key role in the inflammatory response process. Inflammasome activation is also critical in the development of chronic inflammatory diseases. In recent years, the role of AIM2 as a DNA sensor in the development of periodontitis and diabetes has attracted extensive attention. Many studies have shown that the activation of AIM2 inflammasome is involved in the development of periodontitis. Some scholars have also reported that the activation of AIM2 inflammasome can directly or indirectly affect the conduction of the insulin signaling pathways, thereby participating in the occurrence and development of diabetes. While extensive research has established the bidirectional relationship between periodontitis and diabetes, there remains a paucity of knowledge regarding the potential impact of AIM2 inflammasome activation in the reciprocal association. This article focuses on related studies on AIM2 inflammasome in the two diseases and explores its potential mechanism in the bidirectional relationship, thus laying the foundation for subsequent research on the pathogenesis of periodontitis and diabetes.

Key words: absent in melanoma 2 inflammasome, periodontitis, diabetes

CLC Number: 

  • R781.4

TrendMD: 

Fig 1

Assembly and activation of AIM2 inflammasome"

1 Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities[J]. Nat Rev Immunol, 2021, 21(7): 426-440.
2 刘旭芳, 马雨轩, 牛丽娜. 线粒体功能障碍在牙周炎发生、发展及治疗中作用的研究进展[J]. 口腔疾病防治, 2023, 31(12): 889-895.
Liu XF, Ma YX, Niu LN. Research progress on the role of mitochondrial dysfunction in the occurrence, progression and treatment of periodontitis[J]. J Prev Treat Stomatol Dis, 2023, 31(12): 889-895.
3 de Candia P, Prattichizzo F, Garavelli S, et al. Type 2 diabetes: how much of an autoimmune disease[J]. Front Endocrinol, 2019, 10: 451.
4 Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol, 2020, 16(7): 377-390.
5 Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes[J]. Nat Rev Immunol, 2019, 19(12): 734-746.
6 Păunică I, Giurgiu M, Dumitriu AS, et al. The bidirectional relationship between periodontal disease and diabetes mellitus-a review[J]. Diagnostics, 2023, 13(4): 681.
7 Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis[J]. Periodontol 2000, 2015, 69(1): 7-17.
8 Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes[J]. J Clin Periodontol, 2018, 45(2): 150-166.
9 Fan Z, Chen R, Yin W, et al. Effects of AIM2 and IFI16 on infectious diseases and inflammation[J]. Viral Immunol, 2023, 36(7): 438-448.
10 Crump KE, Sahingur SE. Microbial nucleic acid sensing in oral and systemic diseases[J]. J Dent Res, 2016, 95(1): 17-25.
11 Wang B, Tian Y, Yin Q. AIM2 inflammasome assembly and signaling[J]. Adv Exp Med Biol, 2019, 1172: 143-155.
12 Cridland JA, Curley EZ, Wykes MN, et al. The mammalian PYHIN gene family: phylogeny, evolution and expression[J]. BMC Evol Biol, 2012, 12: 140.
13 Wang B, Bhattacharya M, Roy S, et al. Immunobio-logy and structural biology of AIM2 inflammasome[J]. Mol Aspects Med, 2020, 76: 100869.
14 Jin TC, Perry A, Jiang JS, et al. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor[J]. Immunity, 2012, 36(4): 561-571.
15 Sharma BR, Karki R, Kanneganti TD. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection[J]. Eur J Immunol, 2019, 49(11): 1998-2011.
16 Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity[J]. Eur J Immunol, 2016, 46(2): 269-280.
17 Ma Z, Ni GX, Damania B. Innate sensing of DNA virus genomes[J]. Annu Rev Virol, 2018, 5(1): 341-362.
18 Man SM, Karki R, Sasai MW, et al. IRGB10 libe-rates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes[J]. Cell, 2016, 167(2): 382-396.e17.
19 Man SM, Karki R, Subbarao Malireddi RK, et al. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection[J]. Nat Immunol, 2015, 16(5): 467-475.
20 Meunier E, Wallet P, Dreier RF, et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida [J]. Nat Immunol, 2015, 16(5): 476-484.
21 Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol, 2020, 20(3): 143-157.
22 Forouzandeh M, Besen J, Keane RW, et al. The inflammasome signaling proteins ASC and IL-18 as biomarkers of psoriasis[J]. Front Pharmacol, 2020, 11: 1238.
23 Fan XJ, Jiao LY, Jin TC. Activation and immune regulation mechanisms of PYHIN family during microbial infection[J]. Front Microbiol, 2022, 12: 809412.
24 Marchesan JT, Girnary MS, Moss K, et al. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics[J]. Periodontol 2000, 2020, 82(1): 93-114.
25 Park E, Na HS, Song YR, et al. Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection[J]. Infect Immun, 2014, 82(1): 112-123.
26 Bostanci N, Meier A, Guggenheim B, et al. Regulation of NLRP3 and AIM2 inflammasome gene expression levels in gingival fibroblasts by oral biofilms[J]. Cell Immunol, 2011, 270(1): 88-93.
27 Belibasakis GN, Guggenheim B, Bostanci N. Down-regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis [J]. Innate Immun, 2013, 19(1): 3-9.
28 Sahingur SE, Xia XJ, Voth SC, et al. Increased nucleic acid receptor expression in chronic periodontitis[J]. J Periodontol, 2013, 84(10): e48-e57.
29 Xue F, Shu R, Xie YF. The expression of NLRP3, NLRP1 and AIM2 in the gingival tissue of periodontitis patients: RT-PCR study and immunohistoche-mistry[J]. Arch Oral Biol, 2015, 60(6): 948-958.
30 Aral K, Berdeli E, Cooper PR, et al. Differential expression of inflammasome regulatory transcripts in periodontal disease[J]. J Periodontol, 2020, 91(5): 606-616.
31 Marchesan JT, Jiao YZ, Moss K, et al. Common polymorphisms in IFI16 and AIM2 genes are asso-ciated with periodontal disease[J]. J Periodontol, 2017, 88(7): 663-672.
32 Li WJ, Zheng QW, Meng HX, et al. Integration of genome-wide association study and expression quantitative trait loci data identifies AIM2 as a risk gene of periodontitis[J]. J Clin Periodontol, 2020, 47(5): 583-593.
33 Lu S, Li YR, Qian ZJ, et al. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus[J]. Front Immunol, 2023, 14: 1052756.
34 Cataño Cañizales YG, Uresti Rivera EE, García Jacobo RE, et al. Increased levels of AIM2 and circulating mitochondrial DNA in type 2 diabetes[J]. Iran J Immunol, 2018, 15(2): 142-155.
35 Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes[J]. Science, 2005, 307(5708): 384-387.
36 Bae JH, Jo SI, Kim SJ, et al. Circulating cell-free mtDNA contributes to AIM2 inflammasome-media-ted chronic inflammation in patients with type 2 diabetes[J]. Cells, 2019, 8(4): 328.
37 Hsu CC, Fidler TP, Kanter JE, et al. Hematopoietic NLRP3 and AIM2 inflammasomes promote diabetes-accelerated atherosclerosis, but increased necrosis is independent of pyroptosis[J]. Diabetes, 2023, 72(7): 999-1011.
38 Li H, Yang H, Ding Y, et al. Experimental periodontitis induced by Porphyromonas gingivalis does not alter the onset or severity of diabetes in mice[J]. J Periodontal Res, 2013, 48(5): 582-590.
39 杨炳涛, 徐菁玲, 和璐, 等. 伴糖尿病牙周炎患者牙龈卟啉单胞菌FimA基因型的检测[J]. 中华口腔医学杂志, 2016, 51(1): 20-24.
Yang BT, Xu JL, He L, et al. Porphyromonas gingivalis FimA genotype distribution among periodontitis patients with type 2 diabetes[J]. Chin J Stomatol, 2016, 51(1): 20-24.
40 Ran SJ, Liu B, Gu SS, et al. Analysis of the expression of NLRP3 and AIM2 in periapical lesions with apical periodontitis and microbial analysis outside the apical segment of teeth[J]. Arch Oral Biol, 2017, 78: 39-47.
41 Arunachalam LT, Suresh S, Lavu V, et al. Association of salivary levels of DNA sensing inflammasomes AIM2, IFI16, and cytokine IL18 with perio-dontitis and diabetes[J]. J Periodontol, 2024, 95(2): 114-124.
42 Chen H, Peng LM, Wang ZX, et al. Exploration of cross-talk and pyroptosis-related gene signatures and molecular mechanisms between periodontitis and diabetes mellitus via peripheral blood mononuclear cell microarray data analysis[J]. Cytokine, 2022, 159: 156014.
43 Nie L, Zhao PF, Yue ZQ, et al. Diabetes induces macrophage dysfunction through cytoplasmic ds-DNA/AIM2 associated pyroptosis[J]. J Leukoc Biol, 2021, 110(3): 497-510.
44 Zhang P, Lu BY, Zhu R, et al. Hyperglycemia acce-lerates inflammaging in the gingival epithelium through inflammasomes activation[J]. J Periodontal Res, 2021, 56(4): 667-678.
45 Sahingur SE, Xia XJ, Schifferle RE. Oral bacterial DNA differ in their ability to induce inflammatory responses in human monocytic cell lines[J]. J Perio-dontol, 2012, 83(8): 1069-1077.
46 Kim Y, Jo AR, Jang DH, et al. Toll-like receptor 9 mediates oral bacteria-induced IL-8 expression in gingival epithelial cells[J]. Immunol Cell Biol, 2012, 90(6): 655-663.
47 Silva LM, Doyle AD, Greenwell-Wild T, et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier[J]. Science, 2021, 374(6575): eabl5450.
48 Lopes DEM, Jabr CL, Dejani NN, et al. Inhibition of 5-lipoxygenase attenuates inflammation and bone resorption in lipopolysaccharide-induced periodontal disease[J]. J Periodontol, 2017. doi: 10.1902/jop.2017.170210 .
doi: 10.1902/jop.2017.170210
49 Huang HY, Pan WY, Wang YF, et al. Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis[J]. Nat Commun, 2022, 13(1): 5925.
50 Zhu XZ, Chu CJ, Pan WY, et al. The correlation between periodontal parameters and cell-free DNA in the gingival crevicular fluid, saliva, and plasma in Chinese patients: a cross-sectional study[J]. J Clin Med, 2022, 11(23): 6902.
51 Viglianisi G, Santonocito S, Polizzi A, et al. Impact of circulating cell-free DNA (cfDNA) as a biomar-ker of the development and evolution of periodontitis[J]. Int J Mol Sci, 2023, 24(12): 9981.
52 Wang JY, Zhou YC, Ren B, et al. The role of neutrophil extracellular traps in periodontitis[J]. Front Cell Infect Microbiol, 2021, 11: 639144.
53 Carestia A, Frechtel G, Cerrone G, et al. NETosis before and after hyperglycemic control in type 2 diabetes mellitus patients[J]. PLoS One, 2016, 11(12): e0168647.
54 Górska R, Gregorek H, Kowalski J, et al. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis[J]. J Clin Periodontol, 2003, 30(12): 1046-1052.
55 Leung OM, Li JT, Li XS, et al. Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes[J]. Cell Rep, 2018, 24(6): 1610-1626.
56 Choubaya C, Chahine N, Aoun G, et al. Expression of inflammatory mediators in periodontitis over established diabetes: an experimental study in rats[J]. Med Arch, 2021, 75(6): 436-443.
57 Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases[J]. Blood, 2011, 117(14): 3720-3732.
58 Fischer CP, Perstrup LB, Berntsen A, et al. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans[J]. Clin Immunol, 2005, 117(2): 152-160.
59 Pradeep AR, Daisy H, Hadge P, et al. Correlation of gingival crevicular fluid interleukin-18 and monocyte chemoattractant protein-1 levels in periodontal health and disease[J]. J Periodontol, 2009, 80(9): 1454-1461.
60 Banu S, Jabir NR, Mohan R, et al. Correlation of Toll-like receptor 4, interleukin-18, transaminases, and uric acid in patients with chronic periodontitis and healthy adults[J]. J Periodontol, 2015, 86(3): 431-439.
61 Bostanci N, Emingil G, Saygan B, et al. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases[J]. Clin Exp Immunol, 2009, 157(3): 415-422.
62 Song L, Dong G, Guo L, et al. The function of dendritic cells in modulating the host response[J]. Mol Oral Microbiol, 2018, 33(1): 13-21.
63 Papathanasiou E, Teles F, Griffin T, et al. Gingival crevicular fluid levels of interferon-γ, but not interleukin-4 or-33 or thymic stromal lymphopoietin, are increased in inflamed sites in patients with periodontal disease[J]. J Periodontal Res, 2014, 49(1): 55-61.
64 Monteleone M, Stow JL, Schroder K. Mechanisms of unconventional secretion of IL-1 family cytokines[J]. Cytokine, 2015, 74(2): 213-218.
65 Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines[J]. J Exp Med, 2020, 217(1): e20190314.
66 Fernandes-Alnemri T, Yu JW, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA[J]. Nature, 2009, 458(7237): 509-513.
67 Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses[J]. Theranostics, 2021, 11(9): 4436-4451.
68 Liu W, Liu J, Wang W, et al. NLRP6 induces pyroptosis by activation of caspase-1 in gingival fibroblasts[J]. J Dent Res, 2018, 97(12): 1391-1398.
69 Ning WC, Acharya A, Li SM, et al. Identification of key pyroptosis-related genes and distinct pyroptosis-related clusters in periodontitis[J]. Front Immunol, 2022, 13: 862049.
70 Zhao PF, Yue ZQ, Nie L, et al. Hyperglycaemia-associated macrophage pyroptosis accelerates perio-dontal inflamm-aging[J]. J Clin Periodontol, 2021, 48(10): 1379-1392.
[1] Mengjie Chen,Wenhua Xu,Qingqing Liu,Yudan Kang,Rong Liu,Lilei Zhu. Correlation analysis between the systemic immune-inflammatory index and graded diagnosis in patients with perio-dontitis [J]. Int J Stomatol, 2024, 51(6): 706-712.
[2] Hongchen Mao,Zheng Wang,Deqin Yang. Advances in the role of outer membrane vesicles of Porphyromonas gingivalis in oral diseases and its mechanism [J]. Int J Stomatol, 2024, 51(5): 608-615.
[3] Meiyao Qi,Xingying Qi,Xinyi Zhou,Zhen Tan,Quan Yuan. Therapeutic effect of cannabidiol combined with minocycline on periodontitis [J]. Int J Stomatol, 2024, 51(4): 392-400.
[4] Mengjie Chen, Xiaole Liu, Lilei Zhu. The effect of supportive periodontal therapy on blood cell indicators in patients with periodontitis: a retrospective study [J]. Int J Stomatol, 2024, 51(4): 401-405.
[5] Yu Ma, Yu Zuo, Jianhua Liu. Meta-analysis of the efficacy of antimicrobial photodynamic therapy and systemic antimicrobial drug as an adjunct treatment for periodontitis [J]. Int J Stomatol, 2024, 51(4): 406-415.
[6] Shili Liu, Lei Zhao. Progress of research on the correlation between periodontitis and heart failure [J]. Int J Stomatol, 2024, 51(4): 425-432.
[7] Zaimu Yang,Pei Cao,Zhenhua Liu,Qingxian Luan. Correlation study of plasma cell-free extra-mitochondrial mitochondria DNA and periodontitis clinical parameters [J]. Int J Stomatol, 2024, 51(3): 288-295.
[8] Yuhong Ma,Lei Zhao. Process and progress in the clinical research of minimally invasive non-operative periodontal therapy technology [J]. Int J Stomatol, 2024, 51(2): 227-232.
[9] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[10] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[11] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[12] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[13] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[14] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[15] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!