Int J Stomatol ›› 2023, Vol. 50 ›› Issue (5): 506-513.doi: 10.7518/gjkq.2023090

• Oral Oncology • Previous Articles     Next Articles

Differentiation of pleomorphic adenoma and adenolymphoma of parotid gland by CT morphological features, gender and radiomics

Yu Dongyang1,2(),Li Shaodong1(),Han Lei2,Shan Ben2,Liu Yong2,Zhao Zhengyu2   

  1. 1.Dept. of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
    2.Dept. of Radiology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an 223002, China
  • Received:2022-11-15 Revised:2023-03-10 Online:2023-09-01 Published:2023-09-01
  • Contact: Shaodong Li E-mail:501285395@qq.com;13852003378@163.com
  • Supported by:
    2021 Huai’an Health Research Project(HAWJ202116)

Abstract:

Objective This study aimed to explore the differential application of pleomorphic adenoma (PA) and adenolymphoma (AL) in parotid gland on the basis of the morphological characteristics of CT plain scan and gender combined with radiomic model. Methods The morphological features of 56 cases of PA and 49 cases of AL confirmed by pathology were analyzed retrospectively. The morphological characteristics of shape, boundary, cystic degeneration, multiple occurrence, and location of the tumors were observed and analyzed. Six kinds of radiologic features of tumors in CT plain scan images were extracted and analyzed, including gray histogram, absolute gradient, gray-level co-occurrence matrix, autoregressive model, gray-level run length matrix, and wavelet transform. They were used to screen the statistically significant radiomic characteristic parameters between groups. The radial basis function kernel (RBFK), polynomial kernel (PK), and linear kernel (LK) of the support vector machine (SVM) classification model were established for the screened radiomic features. A joint model combined with gender and morphological features was also established. The receiver operator characteristic curve was used to evaluate the diagnostic efficiency of classification models and joint model. Results A total of 12 features were screened out from 287 radiomic feature parameters to establish classification models. The classification model with RBFK as core had the highest diagnostic efficiency, and the corresponding sensitivity, specificity, accuracy, and area under the curve (AUC) were 90.2%, 82.5%, 89.6%, and 0.883, respectively. PA was more common in women, whereas AL was more common in men. AL was more prone to multiple and cystic degeneration than PA (P<0.05). No significant difference was observed between the two groups in terms of boundary, shape, and the location of the tumor (P>0.05). The sensitivity, specificity, accuracy, and AUC of the combined model based on the radiomic characteristics of RBFK, gender, and morphological characteristics (multiple and cystic changes) were 95.1%, 87.6%, 92.8%, and 0.963, respectively. Conclusion The combination of morphological characteristics based on radiomics characteristics, gender and morphological characteristics could effectively distinguish PA and AL before operation.

Key words: parotid gland, pleomorphic adenoma, adenolymphoma, morphology, radiomics, CT

CLC Number: 

  • R 782

TrendMD: 

Tab 1

Comparison of general clinical data and CT morphological features between two groups of patients"

患者及病灶特征PA组(n=56)AL组(n=49)t值或χ2P
年龄47.8±15.153.6±15.7-1.9140.058
性别(男/女)14/4238/1128.8710.000
多发(有/无)12/4421/285.5680.018
病灶数(个)6675
囊变(有/无)16/5031/444.6150.032
边界(清晰/不清晰)59/771/41.3570.244
部位(浅叶/非浅叶)52/1464/111.0310.310
形状(规则/不规则)48/1861/141.4820.223

Fig 1

Use MaZda ver.4.6 software to segment ROI along the edge of the lesion"

Tab 2

Comparison of feature parameters screened by LASSO between PA and AL M(QL,QU)"

组学特征参数PA组(n=66)AL组(n=75)P
S(2,0)Correlat18.36(12.62,36.00)29.00(22.30,41.02)0.022
Pere.90%119.00(89.56,137.90)59.07(47.90,76.80)<0.001
45dgr_Fraction0.72(0.51,0.81)0.57(0.49,0.73)0.009
Horzl_GLevNonU1767.81(956.55,1987.81)1250.73(951.09,1681.70)0.037
S(4,4)SumVarnc597.76(509.49,821.29)326.08(299.70,422.50)0.028
GrSkewness6.92(5.41,7.35)5.38(4.02,5.99)0.006
Teta41.81(1.02,2.52)0.93(0.79,1.05)<0.001
135dr_GLevNonU0.76(0.60,0.85)0.62(0.52,0.69)0.015
S(5,5)SumOfSqs0.41(0.35,0.49)0.33(0.29,0.40)0.019
Horzl_ShrtREmp0.66(0.52,0.71)0.58(0.51,0.67)0.024
Sigma0.05(0.02,0.09)0.11(0.06,0.18)<0.001
Pere.10%47.67(37.84,54.29)59.81(40.35,67.66)0.032

Fig 2

LASSO model screening for omics features"

Fig 3

12 omics features screened by LASSO model"

Tab 3

Effectiveness of SVM classification model based on radiomics, CT morphological features, and gender construction"

模型灵敏度/%特异度/%准确率/%AUC
性别91.869.177.60.794
CT形态特征81.779.282.30.825
放射组学(RBFK)90.282.589.60.883
联合95.187.692.80.963

Fig 4

Gender, CT morphological features (a) and omics features (b) effectiveness of SVM classification model constructed and diagnostic efficacy of joint model (c)"

1 Assili S, Fathi Kazerooni A, Aghaghazvini L, et al. Dynamic contrast magnetic resonance imaging (DCE-MRI) and diffusion weighted MR imaging (DWI) for differentiation between benign and malignant salivary gland tumors[J]. J Biomed Phys Eng, 2015, 5(4): 157-168.
2 Maahs GS, Oppermann Pde O, Maahs LG, et al. Parotid gland tumors: a retrospective study of 154 patients[J]. Braz J Otorhinolaryngol, 2015, 81(3): 301-306.
3 Ziółkowska M, Bień S, Okła S, et al. Epidemiological and clinical characteristics of 705 salivary glands neoplasms[J]. Otolaryngol Pol, 2013, 67(3): 154-163.
4 Comoglu S, Ozturk E, Celik M, et al. Comprehensive analysis of parotid mass: a retrospective study of 369 cases[J]. Auris Nasus Larynx, 2018, 45(2): 320-327.
5 Noel L, Medford S, Islam S, et al. Epidemiology of salivary gland tumours in an Eastern Caribbean nation: a retrospective study[J]. Ann Med Surg, 2018, 36: 148-151.
6 雷晓雯, 程敬亮, 冉云彩. ADC全域直方图分析对腮腺多形性腺瘤和腺淋巴瘤的鉴别诊断价值[J]. 放射学实践, 2020, 35(8): 1005-1008.
Lei XW, Cheng JL, Ran YC. The value of ADC global histogram analysis in the differential diagnosis of pleomorphic adenoma and lymphoma of the parotid gland[J]. Pract Radiol, 2020, 35 (8): 1005-1008.
7 Qian W, Xu XQ, Zhu LN, et al. Preliminary study of using diffusion kurtosis imaging for characteri-zing parotid gland tumors[J]. Acta Radiol, 2019, 60(7): 887-894.
8 Valstar MH, Mast H, Ten Hove I, et al. Malignant transformation of salivary gland pleomorphic adenoma: proof of principle[J]. J Pathol Clin Res, 2021, 7(5): 432-437.
9 Rooker SA, van Abel KM, Yin LX, et al. Risk factors for subsequent recurrence after surgical treatment of recurrent pleomorphic adenoma of the parotid gland[J]. Head Neck, 2021, 43(4): 1088-1096.
10 Gao M, Hao Y, Huang MX, et al. Salivary gland tumours in a northern Chinese population: a 50-year retrospective study of 7 190 cases[J]. Int J Oral Ma-xillofac Surg, 2017, 46(3): 343-349.
11 李炳雨, 唐祖南, 胡耒豪, 等. 腮腺微小肿瘤的临床病理研究[J]. 北京大学学报(医学版), 2022, 54(2): 335-339.
Li BY, Tang ZN, Hu LH, et al. Clinicopathological study of parotid gland small tumors[J] J Peking Uni (Med Ed), 2022, 54(2): 335-339.
12 金朋, 蒋翠萍, 陈松旺, 等. 腮腺多形性腺瘤和沃辛瘤的超声特征对比分析[J]. 肿瘤影像学, 2022, 31(2): 174-180.
Jin P, Jiang CP, Chen SW, et al. Comparative analysis of ultrasound features between pleomorphic adenoma of the parotid gland and Vosin’s tumor[J]. Tumor Imag, 2022, 31(2): 174-180.
13 于冬洋, 单奔, 柳勇, 等. 3.0T磁共振DWI及动态增强扫描在腮腺常见肿瘤中的诊断价值[J]. 中华全科医师杂志, 2018(4): 303-306.
Yu DY, Shan B, Liu Y, et al. The diagnostic value of 3.0T magnetic resonance DWI and dynamic contrast-enhanced scanning in common parotid gland tumors[J]. Chin J General Pract, 2018(4): 303-306.
14 夏飞飞, 秦文娟, 冯佳, 等. 超声灰度直方图对多形性腺瘤与腺淋巴瘤鉴别诊断效能的初步研究[J]. 国际口腔医学杂志, 2022, 49(1): 60-65.
Xia FF, Qin WJ, Feng J, et al. Preliminary study on the differential diagnostic efficacy of ultrasound grayscale histogram in pleomorphic adenoma and adenolymphoma[J]. Int J Stomatol, 2022, 49(1): 60-65.
15 Psychogios G. Ultrasonography techniques in the preoperative diagnosis of parotid gland tumors-an updated review of the literature[J]. Med Ultrason, 2021, 23(1): 122-123.
16 张丹丹, 尤超, 顾雅佳. 基于动态增强 MRI 影像组学参数的观察者一致性研究[J]. 肿瘤影像学, 2021, 30(4): 252-256.
Zhang DD, You C, Gu YJ. Observer consistency study based on dynamic enhanced MRI imaging omics parameters[J]. Tumor Imag, 2021, 30(4): 252-256.
17 余先超, 孙宇凤, 李鹏, 等. 影像组学在腮腺多形性腺瘤与腺淋巴瘤鉴别诊断中的应用[J]. 现代肿瘤医学, 2021, 29(5): 837-840.
Yu XC, Sun YF, Li P, et al. The application of ima-ging omics in the differential diagnosis of pleomorphic adenoma and lymphoma of the parotid gland[J]. Modern Oncol Med, 2021, 29(5): 837-840.
18 Geistlinger L, Oh S, Ramos M, et al. Multiomic analysis of subtype evolution and heterogeneity in high-grade serous ovarian carcinoma[J]. Cancer Res, 2020, 80(20): 4335-4345.
19 Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images[J]. Clin Radiol, 2004, 59(12): 1061-1069.
20 Pressney I, Khoo M, Endozo R, et al. Pilot study to differentiate lipoma from atypical lipomatous tumour/well-differentiated liposarcoma using MR radiomics-based texture analysis[J]. Skeletal Radiol, 2020, 49(11): 1719-1729.
21 Yuan R, Shi SY, Chen JH, et al. Radiomics in RayPlus: a web-based tool for texture analysis in medical images[J]. J Digit Imaging, 2019, 32(2): 269-275.
22 Wang S, Meng M, Zhang X, et al. Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest[J]. Oncol Lett, 2018, 15(5): 7297-7304.
23 Suh HB, Choi YS, Bae S, et al. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach[J]. Eur Radiol, 2018, 28(9): 3832-3839.
24 Jung YJ, Han MR, Ha EJ, et al. Differentiation of salivary gland tumors through tumor heterogeneity: a comparison between pleomorphic adenoma and Warthin tumor using CT texture analysis[J]. Neuroradiology, 2020, 62(11): 1451-1458.
25 Goyal A, Razik A, Kandasamy D, et al. Role of MR texture analysis in histological subtyping and gra-ding of renal cell carcinoma: a preliminary study[J]. Abdom Radiol (NY), 2019, 44(10): 3336-3349.
26 Huang SY, Franc BL, Harnish RJ, et al. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis[J]. NPJ Breast Cancer, 2018, 4: 24.
27 Guo Y, Kong QC, Zhu YQ, et al. Whole-lesion histogram analysis of the apparent diffusion coefficient: evaluation of the correlation with subtypes of mucinous breast carcinoma[J]. J Magn Reson Ima-ging, 2018, 47(2): 391-400.
28 王友红, 柳勇, 韩婷婷, 等. 基于MR对比增强T1WI纹理分析鉴别泪腺淋巴瘤与泪腺炎性假瘤[J]. 中国医学影像技术, 2022, 38(6): 837-841.
Wang YH, Liu Y, Han TT, et al. Differentiation of lacrimal gland lymphoma and lacrimal gland inflammatory pseudotumor based on contrast-enhanced T1WI texture analysis using MR imaging[J]. Chin Med Imag Technol, 2022, 38(6): 837-841.
29 Park M, Kim J, Choi YS, et al. Application of dynamic contrast-enhanced MRI parameters for diffe-rentiating squamous cell carcinoma and malignant lymphoma of the oropharynx[J]. AJR Am J Roentgenol, 2016, 206(2): 401-407.
30 王安然. 基于CT影像组学的腮腺良恶性肿瘤分类方法研究[D]. 重庆: 重庆医科大学, 2021.
Wang AR. Research on the classification method of benign and malignant parotid gland tumors based on CT imaging omics[D]. Chongqing: Chongqing Me-dical University, 2021.
31 Mahato S, Goyal N, Ram D, et al. Detection of depression and scaling of severity using six channel EEG data[J]. J Med Syst, 2020, 44(7): 118.
32 Cai J, Liu H, Yuan H, et al. A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules[J]. Clin Radiol, 2021, 76(2): 143-151.
33 Gabelloni M, Faggioni L, Attanasio S, et al. Can magnetic resonance radiomics analysis discriminate parotid gland tumors? A pilot study[J]. Diagnostics (Basel), 2020, 10(11): 900.
34 Hussain L, Awan IA, Aziz W, et al. Detecting congestive heart failure by extracting multimodal features and employing machine learning techniques[J]. Biomed Res Int, 2020, 2020: 4281243.
35 Shao S, Mao N, Liu WJ, et al. Epithelial salivary gland tumors: utility of radiomics analysis based on diffusion-weighted imaging for differentiation of benign from malignant tumors[J]. J Xray Sci Technol, 2020, 28(4): 799-808.
36 吴梦苇, 魏培英, 邵畅, 等. MRI多参数联合对腮腺腺淋巴瘤与多形性腺瘤的鉴别诊断价值[J]. 中国临床医学影像杂志, 2022, 33(3): 162-165, 171.
Wu MW, Wei PY, Shao C, et al. The value of MRI multi parameter combination in the differential diagnosis of parotid gland lymphoma and pleomorphic adenoma[J]. Chin J Clin Med Imag, 2022, 33(3): 162-165, 171.
37 王琴, 黄东琼, 于冬洋, 等. 放射组学模型鉴别腮腺多形性腺瘤与沃辛瘤[J]. 肿瘤影像学, 2021, 30(6): 499-503.
Wang Q, Huang DQ, Yu DY, et al. Radioomics mo-del for distinguishing pleomorphic adenoma of the parotid gland from Vosin’s tumor[J]. Tumor Imag, 2021, 30(6): 499-503.
38 林杨, 吴丽芳, 陈懿. 腮腺混合瘤与腺淋巴瘤的磁共振成像表现对比分析[J]. 肿瘤影像学, 2020, 29(3): 319-323.
Lin Y, Wu LF, Chen Y. Comparative analysis of magnetic resonance imaging manifestations between parotid mixed tumor and adenolymphoma[J]. Tumor Imag, 2020, 29(3): 319-323.
39 史灵雪. 多参数MR影像组学特征对腮腺多形性腺瘤及腺淋巴瘤诊断价值的研究[D]. 吉林: 吉林大学, 2021.
Shi LX. Study on the diagnostic value of multi parameter MR imaging omics features for parotid pleomorphic adenoma and adenolymphoma[D]. Jilin: Jilin University, 2021.
40 郭作梁, 陈晓华, 马兴灿, 等. 腮腺多形性腺瘤与腺淋巴瘤的CT影像特征及对比分析[J]. 心电图杂志(电子版), 2019, 8(1): 28-29.
Guo ZL, Chen XH, Ma XC, et al. CT imaging characteristics and comparative analysis of pleomorphic adenoma and lymphoma of the parotid gland[J]. J Electrocardiogram (Electro Ed), 2019, 8(1): 28-29.
[1] Tan Yongzhen,Liang Xinhua. Research progress on the antibacterial mechanism of oral local anesthetics [J]. Int J Stomatol, 2024, 51(1): 74-81.
[2] Wang Nannan,He Hong,Hua Fang. Research progress on the risk factors of orthodontically induced enamel demineralization [J]. Int J Stomatol, 2024, 51(1): 91-98.
[3] Wu Li’an. Application of partial crown reattachment in complicated crown-root fractures of permanent anterior teeth in children [J]. Int J Stomatol, 2023, 50(6): 623-631.
[4] Xu Shukui,Zhang Shan,Xie Xinyu,Ma Wensheng.. Progress in research into the long-term stability of maxillary protraction therapy in skeletal classmalocclusion [J]. Int J Stomatol, 2023, 50(6): 646-652.
[5] Wang Luodan,Fan Hong. Morphological characteristics of sella turcica and its relationship with malocclusion [J]. Int J Stomatol, 2023, 50(6): 653-660.
[6] Sun Xu,Deng Zhennan,Wen Cai,Zhao Ying. Implant surface micromorphological changes after Er: YAG laser irradiation observed under scanning electron microscope [J]. Int J Stomatol, 2023, 50(6): 669-673.
[7] Wang Sujie,Tan Qin,Wei Yuan,Wang Jie,Fan Jie,Yue Erli.. Correlation analysis of serum angiopoietin-2 level with forkhead/winged helix transcription factor p3 regulatory T cells and disease activity in patients with oral lichen planus [J]. Int J Stomatol, 2023, 50(6): 674-678.
[8] Lu Lei,Wang Xin,Kang Zebiao,Xie Fuqiang. Research progress on the application of computer-assisted navigation surgery in complex maxillofacial fractures [J]. Int J Stomatol, 2023, 50(6): 696-703.
[9] Yang Dongye,Zhu Ping,Wu Shuyi. The influencing factors and clinical significance of tongue position [J]. Int J Stomatol, 2023, 50(6): 723-728.
[10] Wang Renyi,Zhao Chengzhi,Pan Jian.. Research progress on the effects of prophylactic antibiotics on postoperative complications during the perioperative period of tooth extraction [J]. Int J Stomatol, 2023, 50(5): 558-565.
[11] Wang Jiaxi,Mingyue Lü,Yuan Quan. Research progress on sticky bone in oral tissue regeneration [J]. Int J Stomatol, 2023, 50(5): 594-602.
[12] Liu Ting,Wu Xiuping.. Research progress on oral-craniomaxillofacial features and treatment of Down syndrome [J]. Int J Stomatol, 2023, 50(5): 618-622.
[13] Xue Jing, Yang Jing.. Key points of evidence-based practice for the Class Ⅱ cavity composite resin restoration [J]. Int J Stomatol, 2023, 50(4): 375-387.
[14] Wu Sijia,Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.. Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth [J]. Int J Stomatol, 2023, 50(4): 388-394.
[15] Wang Gang,Chen Zhuo.. Reduction of the risk of caries after interproximal enamel reduction [J]. Int J Stomatol, 2023, 50(4): 395-400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .