Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (2): 190-194.doi: 10.7518/gjkq.2016.02.017

Previous Articles     Next Articles

Research progress on arginine-glycine-aspartic acid peptide and its derivatives in the surface biological modification of pure titanium and its alloys

Xu Jiliang, Xia Rong   

  1. Dept. of Stomatology, The Second Hospital of Anhui Medical University, Hefei 230601, China)
  • Received:2015-10-13 Revised:2015-12-16 Online:2016-03-01 Published:2016-03-01

Abstract: Titanium and its alloys have excellent biological properties for wide used as dental and orthopedic implant materials. However, titanium is an inert material and cannot be directly osseointegrated with bone after its implantation. Therefore, surface biological modification of pure titanium and its alloy has been a research focus in the field of biological materials. Arginine–glycine–aspartic acid(RGD) peptides, namely, the RGD tripeptide sequence, are a candidate protein in the surface modification of titanium, which are widely present in fibronectin, vitronectin, bone salivary gland proteins, and other extracellular matrix proteins, and can regulate adhesion behavior of cell-serum and cell-extracellular matrix. Therefore, this article seeks to review the study and progression on surface biological modification of pure titanium and its alloys treated by RGD peptide and its derivatives.

Key words: arginine-glycine-aspartic acid, titanium, modification, arginine-glycine-aspartic acid, titanium, modification

CLC Number: 

  • Q 51

TrendMD: 
[1] Saju KK, Jayadas NH, Vidyanand S, et al. Investigations into the molecular-level adhesion characteristics of hydroxyapatite-coated and anodized titanium surfaces using the molecular orbital approach[J]. Proc Inst Mech Eng H, 2011, 225(3):246-254.
[2] Pegueroles M, Aguirre A, Engel E, et al. Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR[J]. J Mater Sci Mater Med, 2011, 22(3):617-627.
[3] Ryu JJ, Park K, Kim HS, et al. Effects of anodized titanium with Arg-Gly-Asp(RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation[J]. Int J Oral Maxillofac Implants, 2013, 28(4):963-972.
[4] Park JW, Kurashima K, Tustusmi Y, et al. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone[J]. Acta Biomater, 2011, 7(8):3222-3229.
[5] Hwang DS, Waite JH, Tirrell M. Promotion of osteoblast osteoblast proliferation on complex coacervation-based hyaluronic acid-recombinant mussel adhesive protein coatings on titanium[J]. Biomaterials, 2010, 31(6):1080-1084.
[6] Chen M, Wu C, Song D, et al. Effect of grooves on adsorption of RGD tripeptide onto rutile TiO(2)(110)surface[J]. J Mater Sci Mater Med, 2009, 20(9):1831-1838.
[7] Maddikeri RR, Tosatti S, Schuler M, et al. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces[J]. J Biomed Mater Res A, 2008, 84(2):425-435.
[8] Zorn G, Gotman I, Gutmanas EY, et al. Surface modification of Ti45Nb alloy by immobilization of RGD peptide via self assembled monolayer[J]. J Mater Sci Mater Med, 2007, 18(7):1309-1315.
[9] Germanier Y, Tosatti S, Broggini N, et al. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs[J]. Clin Oral Implants Res, 2006, 17(3):251-257.
[10] Tosatti S, Schwartz Z, Campbell C, et al. RGDcontaining peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(Llysine)-graft-poly(ethylene glycol)-coated titanium surfaces[J]. J Biomed Mater Res A, 2004, 68(3):458-472.
[11] Oya K, Tanaka Y, Saito H, et al. Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG[J]. Biomaterials, 2009, 30(7):1281-1286.
[12] Tanaka Y, Doi H, Kobayashi E, et al. Determination of the immobilization manner of amine-terminated poly(ethylene glycol) electrodeposited on a titanium surface with XPS and GD-OES[J]. Mater Trans, 2007, 48(3):287-292.
[13] Tanaka Y, Saito H, Tsutsumi Y, et al. Effect of pH on the interaction between zwitterions and titanium oxide[J]. J Colloid Interface Sci, 2009, 330(1):138-143.
[14] Tanaka Y, Matsuo Y, Komiya T, et al. Characterization of the spatial immobilization manner of poly (ethylene glycol) to a titanium surface with immersion and electrodeposition and its effects on platelet adhesion[J]. J Biomed Mater Res A, 2010, 92(1):350-358.
[15] Porté-Durrieu MC, Guillemot F, Pallu S, et al. Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion[J]. Biomaterials, 2004, 25(19):4837-4846.
[16] Paredes V, Salvagni E, Rodríguez-Castellon E, et al. Study on the use of 3-aminopropyltriethoxysilane and 3-chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti-Nb-Hf alloy[J]. J Biomed Mater Res Part B Appl Biomater, 2015, 103(3):495-502.
[17] de Giglio E, Sabbatini L, Colucci S, et al. Synthesis, analytical characterization, and osteoblast adhesion properties on RGD-grafted polypyrrole coatings on titanium substrates[J]. J Biomater Sci Polym Ed, 2000, 11(10):1073-1083.
[18] 战德松, 赵宝红, 田维明, 等. RGD修饰纯钛表面对人牙龈成纤维细胞生物学行为的影响[J]. 材料研究学报, 2005, 19(3):320-324. Zhan DS, Zhao BH, Tian WM, et al. Effects of RGD-grafted titanium on the adhesion of human gingival fibroblasts[J]. Chin J Mat Res, 2005, 19(3):320-324.
[19] 赵宝红, 战德松, 田维明, 等. RGD修饰钛表面对人牙龈成纤维细胞初期黏附和铺展的影响[J]. 材料研究学报, 2005, 19(4):369-374.
Zhao BH, Zhan DS, Tian WM, et al. Influence of RGD-grafted titanium on the adhesion and spreading of human gingival fibroblasts[J]. Chin J Mat Res, 2005, 19(4):369-374.
[20] 赵宝红, 封伟, 王丹宁, 等. RGD肽修饰纯钛表面对人牙龈成纤维细胞和上皮细胞黏附影响研究[J].中国实用口腔科杂志, 2012, 5(1):31-33.
Zhao BH, Feng W, Wang DN, et al. Effects of RGDgrafted titanium on the adhesion of human gingival fibroblasts and epithelial cells[J]. Chin J Pract Stomatol, 2012, 5(1):31-33.
[21] 徐基亮, 夏荣, 孙磊, 等. 纯钛表面加载RGD多肽的体外实验研究[J]. 安徽医科大学学报, 2014, 49(11):1591-1595.
Xu JL, Xia R, Sun L, et al. Study of pure titanium surface loaded with RGD peptide in vitro[J]. Acta Univ Med Anhui, 2014, 49(11):1591-1595.
[22] 张迪, 刘长虹, 章锦才, 等. RGD肽修饰壳聚糖作为种植体表面基因载体的研究[J]. 华西口腔医学杂志, 2014, 32(4):336-340. Zhang D, Liu CH, Zhang JC, et al. RGD peptidemodified chitosan as a gene carrier of implant surface[ J]. West China J Stomatol, 2014, 32(4):336-340.
[23] 徐倩, 冯青, 欧俊, 等. 层层静电自组装构建载药种植体的研究[J]. 华西口腔医学杂志, 2014, 32(6):537-541.
Xu Q, Feng Q, Ou J, et al. Construction of drugloaded titanium implants via layer-by-layer electrostatic self-assembly[J]. West China J Stomatol, 2014, 32(6):537-541.
[24] 李贵才. Ti表面共固定肝素和纤连蛋白分子:复合生物功能化的实现[D]. 西安: 西南交通大学, 2012. Li GC. Ti surface fixed heparin and fibronectin molecules: the realization of the complex biological functionalization[D]. Xi’an: Southwest Jiaotong Univ, 2012.
[25] 董丽. 钛表面接枝RGD及装载BMP的仿细胞外间质聚多糖自组装膜制备与表征[D]. 西安: 西南交通大学, 2014. Dong L. Titanium surface graft RGD and loading BMP imitation cell outer poly polysaccharide preparation and characterization of self-assembled film [D]. Xi’an: Southwest Jiaotong Univ, 2014.
[26] Lim JY, Shaughnessy MC, Zhou Z, et al. Surface energy effects on osteoblast spatial growth and mineralization[J]. Biomaterials, 2008, 29(12):1776-1784.
[27] Voger EA, Bussian RW. Short-term cell-attachment rates: a surface-sensitive test of cell-substrate compatibility[J]. J Biomed Mater Res, 1987, 21(10):1197-1211.
[28] K?mmerer PW, Gabriel M, Al-Nawas B, et al. Early implant healing: promotion of platelet activation and cytokine release by topographical, chemical and biomimetical titanium surface modifications in vitro [J]. Clin Oral Implants Res, 2012, 23(4):504-510.
(本文采编 王晴)
[1] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[2] Zhang Qilin,Li Jun,Li Shuhui. Research progress on nickel-titanium instruments for root canal preparation machine [J]. Int J Stomatol, 2022, 49(6): 663-669.
[3] Ji Xiao,Jing Fangqi,Li Ya,Xue Jing. Data simulation optimization of root canal preparation sequence [J]. Int J Stomatol, 2022, 49(1): 37-47.
[4] Wang Hongyuan,He Lu,Zhang Ru,Zheng Deqiang,Li Hong. Comparative study on the shaping ability of thermally treated continuous rotating nickel-titanium systems for severely curved simulated canals [J]. Int J Stomatol, 2021, 48(3): 297-304.
[5] Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340.
[6] Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444.
[7] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[8] Liu Chunxu,Lu Yuqing,Jia Luming,Dong Bo,Zhang Qianqian,Yu Haiyang. Comparative study of the retention force of titanium-alloy clasps fabricated through selective laser melting and casting [J]. Int J Stomatol, 2020, 47(2): 152-158.
[9] Jiang Xiaoge,Wu Jiaxin,Pei Xibo. Research progress on metal-organic frameworks and their complex in biomedical field [J]. Int J Stomatol, 2019, 46(5): 552-557.
[10] Yu Wanqi,Zhou Yanmin,Zhao Jinghui. Research status of new materials in dental implants [J]. Int J Stomatol, 2019, 46(4): 488-496.
[11] Yuhao Liu,Quan Yuan,Shiwen Zhang. Recent research progress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting [J]. Inter J Stomatol, 2019, 46(2): 228-233.
[12] Yanli Liu,Wei Zhao,Biying Zhang,Xiaoli An. Research progress on maxillary protraction with skeletal anchorage in growing patients with Class Ⅲ malocclusion [J]. Inter J Stomatol, 2019, 46(1): 112-118.
[13] Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521.
[14] Xingying Qi,Guoying Zheng,Lei. Sui. Effects of titanium implant surface topographies on osteogenesis [J]. Inter J Stomatol, 2018, 45(5): 527-533.
[15] Zhang Xin, Wang Chenglin, Yang Jing, Ye Ling. Epigenetic regulation in dental pulp stem cells [J]. Inter J Stomatol, 2018, 45(3): 261-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .