Inter J Stomatol ›› 2015, Vol. 42 ›› Issue (5): 578-582.doi: 10.7518/gjkq.2015.05.023

Previous Articles     Next Articles

Structure and action mechanism of major outer sheath protein of Treponema denticola

Wang Jun, Wu Leng, Zhao Lei, Wu Yafei   

  1. State Key Laboratory of Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2014-07-08 Revised:2015-03-20 Online:2015-09-01 Published:2015-09-01

Abstract:

The major outer sheath protein(Mosp), which consists of glucose, galactose, glutamine, galactosamine, and fucose, is the most abundant outer membrane protein on the cell surface of Treponema denticola(T.denticola) at low molecular polymer form. The central domain of Mosp plays a significant role in the adhesion of bacteria and the host proteins. Mosp also acts as an adhesion to some extent, thereby competitively inhibiting the combination of T.denticola, Porphyromonas gingivalis, and Fusobacterium nucleatum. Cytotoxicity is another contributing factor that allows the bacteria to obtain nutrients, transport bacterial products to the infected host cells, and mediate cytotoxic activity. Furthermore, the Mosp can destroy the migration of fibroblasts and neutrophils. However, the migration of fibroblasts is closely related to reconstruction and healing in periodontal connective tissues, whereas neutrophils play key roles in the periodontal innate immune system, thereby enabling neutrophils to limit the spread of pathogens. Understanding the mechanism underlying Mosp activity may provide new insights intothe reduction of T.denticola pathogenicity and may lay a solid theoretical foundation fordelaying the progression of periodontitis.

Key words: Treponema denticola, major outer sheath protein, periodontitis


TrendMD: 
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[3] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[4] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[5] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[6] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[7] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[8] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[9] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[10] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[11] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[12] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[13] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
[14] Zhou Jiajia,Zhao Lei,Xu Xin. Research progress on the genetic polymorphism of periodontitis [J]. Int J Stomatol, 2022, 49(4): 432-440.
[15] Zhu Jiani,Su Qin. Research status of the use of root canal and periapical microflora in refractory periapical periodontitis [J]. Int J Stomatol, 2022, 49(3): 283-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .