Inter J Stomatol ›› 2015, Vol. 42 ›› Issue (4): 485-491.doi: 10.7518/gjkq.2015.04.028

Previous Articles     Next Articles

Research progress on dental pulp tissue regeneration based on revascularization and tooth tissue engineering

He Lu, Guo Jun, Yang Jian   

  1. Dept. of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China
  • Online:2015-07-01 Published:2015-07-01

Abstract:

Pulpitis and periapical periodontitis are mainly treated with root canal therapy, and immature permanent tooth is treated through apexification. These treatment modalities exhibit some limitations that can be theoretically surmounted through dental pulp regeneration, thus, dental pulp tissue regeneration could be a superior treatment of pulpitis and periapical periodontitis. This technique can be performed using two approaches. The first approach is based on host cells from the apical region; these cells are induced to migrate toward the interior of the root canal and differentiate into a vascularized pulp tissue. The other approach is based on the transplantation of stem cells into the root canal and the differentiation of such cells into a new dental pulp. This paper summarized the research progress and challenges on dental pulp regeneration based on revascularization and tooth tissue engineering.

Key words: pulp regeneration, revascularization, stem cell, tooth tissue engineering


TrendMD: 
[1] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[2] revascularization Meta-analysis of the efficacy comparison between endodontic,Zhuanzhuan apexification Li. OSID) [J]. Int J Stomatol, 2023, 50(2): 177-185.
[3] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[4] Li Zhuanzhuan,Gegen Tana. Research progress on root canal irrigation and disinfection drugs for pulp revascularization [J]. Int J Stomatol, 2022, 49(5): 569-577.
[5] Li Pei,Lin Ling,Zhao Wei.. Research progress on the stem cells from human exfoliated deciduous teeth in the regeneration and repair of oral tissue [J]. Int J Stomatol, 2022, 49(4): 483-488.
[6] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[7] Cai Yunzhu,Zhu Shu,Liu Yao,Chen Xu.. Research progress on dental stem cells in the treatment of nervous system diseases [J]. Int J Stomatol, 2022, 49(3): 255-262.
[8] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[9] Qin Siwen,Liao Li.. Strategies of vascularization in dental pulp regeneration [J]. Int J Stomatol, 2022, 49(3): 272-282.
[10] Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226.
[11] Zhou Yi,Zhao Yuming. Research progress on various dental pulp regeneration scaffolds [J]. Int J Stomatol, 2022, 49(1): 19-26.
[12] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[13] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[14] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[15] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .