Inter J Stomatol ›› 2014, Vol. 41 ›› Issue (5): 598-602.doi: 10.7518/gjkq.2014.05.023

Previous Articles     Next Articles

Molecular mechanism of peroxisomal proliferator activated receptor γ regulation in periodontitis

Chen Mingyue1,2, Wang Changning1   

  1. 1. The State Key Laboratory Breeding Base of Basic Science of Stomatology(Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; 2. Dept. of Stomatology, Taihe Hospital, Shiyan 422000, China
  • Received:2013-09-25 Revised:2014-01-11 Online:2014-09-01 Published:2014-09-01

Abstract:

The study of peroxisomal proliferator activated receptor(PPAR)γ and the its molecular mechanism can reveal the relationship between periodontitis and systemic diseases. PPARγ, which is composed of six areas and four function structural domains, can regulate a variety of nucleus target genes upon being activated by its ligand. Thus, PPARγ participates in atherosclerosis, regulates the blood glucose and lipids, and improves insulin resistance. PPARγ is a transcription factor that can convert periodontal stem cells into adipocyte. It can also affect the signaling pathways in inflammatory cells and inhibit the inflammatory process. PPARγ can promote fat cell differentiation, inhibit osteoblast differentiation, and promote osteoclast differentiation through the classic and non-classic wingless-type mice mammary tumor virus integration site family and β-serial protein pathways. PPARγ exerts a protective effect on periodontitis by inhibiting the gene expression of cytokines, chemokines, and the adhesion factor in the multiple links of inflammatory transcription. Lipopolysaccharide(LPS) is the main factor in chronic progressive inflammatory alveolar bone loss. The PPARγ agonist can decrease the LPS-induced phosphorylation of protein kinase B and thus inhibits the inflammatory bone resorption of periodontitis.

Key words: peroxisomal proliferator activated receptor γ, periodontitis, bone metabolism

CLC Number: 

  • Q 51

TrendMD: 
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[3] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[4] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[5] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[6] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[7] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[8] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[9] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[10] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[11] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[12] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[13] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
[14] Zhou Jiajia,Zhao Lei,Xu Xin. Research progress on the genetic polymorphism of periodontitis [J]. Int J Stomatol, 2022, 49(4): 432-440.
[15] Zhu Jiani,Su Qin. Research status of the use of root canal and periapical microflora in refractory periapical periodontitis [J]. Int J Stomatol, 2022, 49(3): 283-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .