国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (4): 432-440.doi: 10.7518/gjkq.2022055

• 综述 • 上一篇    下一篇

牙周炎相关基因多态性的研究进展

周佳佳1(),赵蕾2,徐欣1()   

  1. 1.口腔疾病研究国家重点实验室;国家口腔疾病临床医学研究中心;四川大学华西口腔医院牙体牙髓病科 成都 610041
    2.口腔疾病研究国家重点实验室;国家口腔疾病临床医学研究中心;四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2021-11-29 修回日期:2022-03-10 出版日期:2022-07-01 发布日期:2022-06-28
  • 通讯作者: 徐欣
  • 作者简介:周佳佳,硕士,Email:412070261@qq.com
  • 基金资助:
    国家自然科学基金(81771099);四川大学华西口腔医院临床队列研究项目(LCYJ2019-4)

Research progress on the genetic polymorphism of periodontitis

Zhou Jiajia1(),Zhao Lei2,Xu Xin1()   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Di-seases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomato-logy, Sichuan University, Chengdu 610041, China
  • Received:2021-11-29 Revised:2022-03-10 Online:2022-07-01 Published:2022-06-28
  • Contact: Xin Xu
  • Supported by:
    National Natural Science Foundation of China(81771099);Clinical Cohort Study Project of West China Hospital of Stomatology, Sichuan University(LCYJ2019-4)

摘要:

牙周炎是由微生物、遗传和环境因素共同作用引发的慢性感染性疾病。宿主基因多态性可影响宿主固有免疫的水平,调控微生物群落组成与结构,在牙周炎的发生发展及预后中有重要作用。牙周炎遗传易感性的早期研究主要集中在与牙周炎发生发展有关的细胞因子、趋化因子、代谢调节因子以及与先天性和获得性免疫反应相关的蛋白质的单核苷酸多态性。随着人类基因组计划的完成和高通量基因测序技术的发展,全基因组关联分析成为研究牙周炎遗传变异的有效策略,后全基因组关联分析进一步采用新的统计学方法深入挖掘牙周炎的遗传学机制。本文围绕单核苷酸多态性分析、全基因组关联分析和后全基因组关联分析在牙周炎遗传易感性领域的进展进行综述,旨在从易感基因角度为牙周炎高危人群的重点防治提供思路。

关键词: 牙周炎, 易感性, 单核苷酸多态性, 全基因组关联分析, 固有免疫

Abstract:

Periodontitis is a chronic infectious disease resulting from the complex interaction among microbial, genetic, and environmental factors. Genetic polymorphisms that affect host innate immune and regulate the structure of the microbial community have been implicated in the development and prognosis of periodontitis. Early studies on genetic susceptibility of periodontitis have focused on single-nucleotide polymorphisms of cytokines, chemokines, metabolic regulators, and proteins of innate and acquired immune responses associated with the development of periodontitis. With the completion of the Human Genome Project and the development of high-throughput sequencing technology, the genome-wide association study has become an effective strategy to study genetic variation in periodontitis. In addition, the post genome-wide association study applied new statistical methods to identify more genetic mechanisms of periodontitis. This review summarized the progress on the genetic susceptibility of periodontitis obtained from single-nucleotide polymorphism, genome-wide association, and post-genome-wide association studies to advance the knowledge on periodontal high-risk po-pulation precision management from the genetic polymorphism perspective.

Key words: periodontitis, susceptibility, single nucleo-tide polymorphism, genome wide association study, innate immune

中图分类号: 

  • R 781.4
1 Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038.
2 Risch NJ. Searching for genetic determinants in the new millennium[J]. Nature, 2000, 405(6788): 847-856.
3 Loos BG, van Dyke TE. The role of inflammation and genetics in periodontal disease[J]. Periodontol 2000, 2020, 83(1): 26-39.
4 Nielsen R. Population genetic analysis of ascertained SNP data[J]. Hum Genomics, 2004, 1(3): 218-224.
5 Yoshie H, Kobayashi T, Tai H, et al. The role of genetic polymorphisms in periodontitis[J]. Periodontol 2000, 2007, 43: 102-132.
6 Tatakis DN. Interleukin-1 and bone metabolism: a review[J]. J Periodontol, 1993, 64(5 ): 416-431.
7 Kornman KS, Crane A, Wang HY, et al. The interleukin-1 genotype as a severity factor in adult perio-dontal disease[J]. J Clin Periodontol, 1997, 24(1): 72-77.
8 Laine ML, Farré MA, González G, et al. Polymorphisms of the interleukin-1 gene family, oral microbial pathogens, and smoking in adult periodontitis[J]. J Dent Res, 2001, 80(8): 1695-1699.
9 Nikolopoulos GK, Dimou NL, Hamodrakas SJ, et al. Cytokine gene polymorphisms in periodontal di-sease: a meta-analysis of 53 studies including 4 178 cases and 4 590 controls[J]. J Clin Periodontol, 2008, 35(9): 754-767.
10 Ma L, Chu WM, Zhu J, et al. Interleukin-1β (3953/4) C→T polymorphism increases the risk of chronic periodontitis in Asians: evidence from a meta-analysis of 20 case-control studies[J]. Arch Med Sci, 2015, 11(2): 267-273.
11 da Silva FR, Guimarães-Vasconcelos AC, de-Carvalho-França LF, et al. Relationship between -889 C/T polymorphism in interleukin-1A gene and risk of chronic periodontitis: evidence from a meta-analysis with new published findings[J]. Med Oral Patol Oral Cir Bucal, 2017, 22(1): e7-e14.
12 Diehl SR, Wang Y, Brooks CN, et al. Linkage disequilibrium of interleukin-1 genetic polymorphisms with early-onset periodontitis[J]. J Periodontol, 1999, 70(4): 418-430.
13 Boukortt KN, Saidi-Ouahrani N, Boukerzaza B, et al. Association analysis of the IL-1 gene cluster polymorphisms with aggressive and chronic perio-dontitis in the Algerian population[J]. Arch Oral Biol, 2015, 60(10): 1463-1470.
14 Holla LI, Fassmann A, Augustin P, et al. The asso-ciation of interleukin-4 haplotypes with chronic pe-riodontitis in a Czech population[J]. J Periodontol, 2008, 79(10): 1927-1933.
15 Chen D, Zhang TL, Wang X. Association between polymorphisms in interleukins 4 and 13 genes and chronic periodontitis in a Han Chinese population[J]. Biomed Res Int, 2016, 2016: 8389020.
16 Yan Y, Weng H, Shen ZH, et al. Association between interleukin-4 gene -590 c/t, -33 c/t, and 70-base-pair polymorphisms and periodontitis susceptibility: a meta-analysis[J]. J Periodontol, 2014, 85(11): e354-e362.
17 Jia XW, Yuan YD, Yao ZX, et al. Association between IL-4 and IL-4R polymorphisms and periodontitis: a meta-analysis[J]. Dis Markers, 2017, 2017: 8021279.
18 Zhao B, Li XQ, Li RH. Genetic relationship between IL-6 rs1800796 polymorphism and susceptibility to periodontitis[J]. Immunol Invest, 2019, 48(3): 268-282.
19 Nibali L, D’ Aiuto F, Donos N, et al. Association between periodontitis and common variants in the promoter of the interleukin-6 gene[J]. Cytokine, 2009, 45(1): 50-54.
20 Zhao B, Li RH. The association between periodontitis and interleukin-6 genetic polymorphism -174 G/C: a meta-analysis[J]. Arch Oral Biol, 2018, 96: 13-20.
21 Sajadi M, Shahmohammadi A, Mahmazi S, et al. Study of association between interleukin-8-845 T/C and+781 C/T polymorphisms with periodontitis di-sease among population from Western Iran[J]. Mol Biol Rep, 2018, 45(5): 1263-1268.
22 Chen X, Huang JP, Zhong LJ, et al. Quantitative assessment of the associations between interleukin-8 polymorphisms and periodontitis susceptibility[J]. J Periodontol, 2015, 86(2): 292-300.
23 Claudino M, Trombone AP, Cardoso CR, et al. The broad effects of the functional IL-10 promoter-592 polymorphism: modulation of IL-10, TIMP-3, and OPG expression and their association with periodontal disease outcome[J]. J Leukoc Biol, 2008, 84(6): 1565-1573.
24 Zhong QF, Ding C, Wang ML, et al. Interleukin-10 gene polymorphisms and chronic/aggressive perio-dontitis susceptibility: a meta-analysis based on 14 case-control studies[J]. Cytokine, 2012, 60(1): 47-54.
25 Zhang Z, Zheng YL, Li XY. Interleukin-10 gene polymorphisms and chronic periodontitis susceptibility: evidence based on 33 studies[J]. J Periodontal Res, 2019, 54(2): 95-105.
26 Taiete T, Casati MZ, Stolf CS, et al. Validation of reported GLT6D1 (rs1537415), IL10 (rs6667202), and ANRIL (rs1333048) single nucleotide polymorphisms for aggressive periodontitis in a Brazilian population[J]. J Periodontol, 2019, 90(1): 44-51.
27 Wang Z, Li YF, Zhou YH, et al. Association between the IL-10 rs1800872 polymorphisms and pe-riodontitis susceptibility: a meta-analysis[J]. Medicine (Baltimore), 2019, 98(40): e17113.
28 Song GG, Choi SJ, Ji JD, et al. Association between tumor necrosis factor-α promoter -308 A/G, -238 A/G, interleukin-6 -174 G/C and -572 G/C polymorphisms and periodontal disease: a meta-analysis[J]. Mol Biol Rep, 2013, 40(8): 5191-5203.
29 Wei XM, Chen YJ, Wu L, et al. Tumor necrosis factor‑α G-308A (rs1800629) polymorphism and aggressive periodontitis susceptibility: a meta-analysis of 16 case-control studies[J]. Sci Rep, 2016, 6: 19099.
30 Li Y, Yang J, Wu XY, et al. TNF-α polymorphisms might influence predisposition to periodontitis: a meta-analysis[J]. Microb Pathog, 2020, 143: 104113.
31 Hajishengallis E, Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults[J]. J Dent Res, 2014, 93(3): 231-237.
32 Saremi L, Esmaeilzadeh E, Ghorashi T, et al. Association of Fc gamma-receptor genes polymorphisms with chronic periodontitis and peri-implantitis[J]. J Cell Biochem, 2019. doi:10.1002/jcb.28486 .
doi: 10.1002/jcb.28486
33 Song GG, Lee YH. Associations between FCGR2A rs1801274, FCGR3A rs396991, FCGR3B NA1/NA2 polymorphisms and periodontitis: a meta-analysis[J]. Mol Biol Rep, 2013, 40(8): 4985-4993.
34 Fu YL, Korostoff JM, Fine DH, et al. Fc gamma receptor genes as risk markers for localized aggressive periodontitis in African-Americans[J]. J Perio-dontol, 2002, 73(5): 517-523.
35 Sellers RM, Payne JB, Yu F, et al. TLR4 Asp299Gly polymorphism may be protective against chronic periodontitis[J]. J Periodontal Res, 2016, 51(2): 203-211.
36 Shan C, Aisaiti A, Wu ZP, et al. Association of TLR-2 gene polymorphisms with the risk of periodontitis: a meta-analysis[J]. Dis Markers, 2020, 2020: 9353958.
37 Leite FRM, Enevold C, Bendtzen K, et al. Pattern recognition receptor polymorphisms in early perio-dontitis[J]. J Periodontol, 2019, 90(6): 647-654.
38 Zhang Y, Syed R, Uygar C, et al. Evaluation of human leukocyte N-formylpeptide receptor (FPR1) SNPs in aggressive periodontitis patients[J]. Genes Immun, 2003, 4(1): 22-29.
39 Maney P, Walters JD. Formylpeptide receptor single nucleotide polymorphism 348T>C and its relationship to polymorphonuclear leukocyte chemotaxis in aggressive periodontitis[J]. J Periodontol, 2009, 80(9): 1498-1505.
40 Laky M, Bertl K, Haririan H, et al. Serum levels of 25-hydroxyvitamin D are associated with periodontal disease[J]. Clin Oral Investig, 2017, 21(5): 1553-1558.
41 Guo HX, Pan J, Pan HB, et al. Correlation of vitamin D receptor gene (ApaⅠ) polymorphism with periodontitis: a meta-analysis of Chinese population[J]. Food Sci Nutr, 2019, 7(11): 3607-3612.
42 Torrungruang K, Chantarangsu S, Sura T, et al. Interplay between vitamin D receptor FokⅠ polymorphism and smoking influences Porphyromonas gingivalis proportions in subgingival plaque[J]. J Clin Periodontol, 2020, 47(8): 912-920.
43 Wan QS, Li L, Yang SK, et al. Role of vitamin D receptor gene polymorphisms on the susceptibility to periodontitis: a meta-analysis of a controversial issue[J]. Genet Test Mol Biomarkers, 2019, 23(9): 618-633.
44 Alfant B, Shaddox LM, Tobler J, et al. Matrix metalloproteinase levels in children with aggressive pe-riodontitis[J]. J Periodontol, 2008, 79(5): 819-826.
45 Ding C, Chen X, Zhang PT, et al. Matrix metalloproteinase-3 -1171 5A/6A polymorphism (rs35068180) is associated with risk of periodontitis[J]. Sci Rep, 2015, 5: 11667.
46 Hsiao YF, Yang LC, Chou YS, et al. Matrix metalloproteinase-2, -9, and tissue inhibitor of MMP-2 gene polymorphisms in Taiwanese periodontitis patients[J]. J Dent Sci, 2016, 11(4): 411-418.
47 Heikkinen AM, Raivisto T, Kettunen K, et al. Pilot study on the genetic background of an active matrix metalloproteinase-8 test in Finnish adolescents [J]. J Periodontol, 2017, 88(5): 464-472.
48 Weng H, Yan Y, Jin YH, et al. Matrix metalloproteinase gene polymorphisms and periodontitis susceptibility: a meta-analysis involving 6,162 indivi-duals[J]. Sci Rep, 2016, 6: 24812.
49 Schaefer AS, Richter GM, Nothnagel M, et al. A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis[J]. Hum Mol Genet, 2010, 19(3): 553-562.
50 Hashim NT, Linden GJ, Ibrahim ME, et al. Replication of the association of GLT6D1 with aggressive periodontitis in a Sudanese population[J]. J Clin Pe-riodontol, 2015, 42(4): 319-324.
51 Munz M, Willenborg C, Richter GM, et al. A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis[J]. Hum Mol Genet, 2017, 26(13): 2577-2588.
52 Shungin D, Haworth S, Divaris K, et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data[J]. Nat Commun, 2019, 10(1): 2773.
53 Tong H, Wei ZL, Yin J, et al. Genetic susceptibility of common polymorphisms in NIN and SIGLEC5 to chronic periodontitis[J]. Sci Rep, 2019, 9(1): 2088.
54 Lundy FT, El Karim IA, Linden GJ. Neuropeptide Y (NPY) and NPY Y1 receptor in periodontal health and disease[J]. Arch Oral Biol, 2009, 54(3): 258-262.
55 Freitag-Wolf S, Dommisch H, Graetz C, et al. Genome-wide exploration identifies sex-specific gene-tic effects of alleles upstream NPY to increase the risk of severe periodontitis in men[J]. J Clin Perio-dontol, 2014, 41(12): 1115-1121.
56 Cirelli T, Nepomuceno R, Orrico SRP, et al. Validation in a Brazilian population of gene markers of periodontitis previously investigated by GWAS and bioinformatic studies[J]. J Periodontol, 2021, 92(5): 689-703.
57 Shusterman A, Munz M, Richter G, et al. The PF4/PPBP/CXCL5 gene cluster is associated with perio-dontitis[J]. J Dent Res, 2017, 96(8): 945-952.
58 Congrains A, Kamide K, Ohishi M, et al. ANRIL: molecular mechanisms and implications in human health[J]. Int J Mol Sci, 2013, 14(1): 1278-1292.
59 Schaefer AS, Richter GM, Groessner-Schreiber B, et al. Identification of a shared genetic susceptibility locus for coronary heart disease and periodontitis[J]. PLoS Genet, 2009, 5(2): e1000378.
60 Ernst FD, Uhr K, Teumer A, et al. Replication of the association of chromosomal region 9p21.3 with ge-neralized aggressive periodontitis (gAgP) using an independent case-control cohort[J]. BMC Med Genet, 2010, 11: 119.
61 Schaefer AS, Bochenek G, Manke T, et al. Validation of reported genetic risk factors for periodontitis in a large-scale replication study[J]. J Clin Periodontol, 2013, 40(6): 563-572.
62 Fentoğlu Ö, Dinç G, Doğru A, et al. Serum, salivary, and tissue levels of plasminogen in familial Mediterranean fever, amyloidosis, and chronic perio-dontitis[J]. J Periodontol, 2018, 89(4): 456-465.
63 Gürkan A, Emingil G, Saygan BH, et al. Tissue plasminogen activator and plasminogen activator inhibitor-1 gene polymorphisms in patients with chronic periodontitis[J]. J Periodontol, 2007, 78(7): 1256-1263.
64 Munz M, Chen H, Jockel-Schneider Y, et al. A haplotype block downstream of plasminogen is associated with chronic and aggressive periodontitis[J]. J Clin Periodontol, 2017, 44(10): 962-970.
65 Di Micco A, Frera G, Lugrin J, et al. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity[J]. Proc Natl Acad Sci U S A, 2016, 113(32): E4671-E4680.
66 Marchesan JT, Jiao YZ, Moss K, et al. Common polymorphisms in IFI16 and AIM2 genes are asso-ciated with periodontal disease[J]. J Periodontol, 2017, 88(7): 663-672.
67 Li WJ, Zheng QW, Meng HX, et al. Integration of genome-wide association study and expression quan-titative trait loci data identifies AIM2 as a risk gene of periodontitis[J]. J Clin Periodontol, 2020, 47(5): 583-593.
68 Divaris K, Monda KL, North KE, et al. Exploring the genetic basis of chronic periodontitis: a genome-wide association study[J]. Hum Mol Genet, 2013, 22(11): 2312-2324.
69 Yoshihara A, Sugita N, Iwasaki M, et al. The interaction between β-3 adrenergic receptor and peroxisome proliferator-activated receptor gamma gene po-lymorphism to periodontal disease in community-dwelling elderly Japanese[J]. J Periodontol, 2015, 86(8): 955-963.
70 Salazar C, Ruiz-Hincapie P, Ruiz LM. The interplay among PINK1/PARKIN/dj-1 network during mitochondrial quality control in cancer biology: protein interaction analysis[J]. Cells, 2018, 7(10): E154.
71 Botelho J, Mascarenhas P, Mendes JJ, et al. Network protein interaction in Parkinson’s disease and periodontitis interplay: a preliminary bioinformatic analysis[J]. Genes (Basel), 2020, 11(11): E1385.
72 Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1620): 20120362.
73 Fang Z, Song M, Lee DH, et al. The role of Mendelian randomization studies in deciphering the effect of obesity on cancer[J]. J Natl Cancer Inst, 2022, 114(3): 361-371.
74 Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy[J]. Eur Heart J, 2019, 40(42): 3459-3470.
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 李然,胡月,张宁,高瑞芳,王翔宇,葛学军. Toll样受体和白细胞介素-17单核苷酸多态性与口腔扁平苔藓易感性的相关性研究[J]. 国际口腔医学杂志, 2024, 51(1): 45-51.
[3] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[4] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[5] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[6] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[7] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[8] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[9] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[10] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[11] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[12] 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316.
[13] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[14] 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219.
[15] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .