Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 392-396.doi: 10.7518/gjkq.2022039

• Oral Microbiology • Previous Articles     Next Articles

Research progress on the relationship between Streptococcus mutans and Candida albicans in caries

Li Shanshan1(),Yang Fang2()   

  1. 1.School of Stomatology, Qingdao University, Qingdao 266003, China
    2.Stomatology Center, Qingdao Municipal Hospital, Qingdao 266071, China
  • Received:2021-10-25 Revised:2022-04-06 Online:2022-07-01 Published:2022-06-28
  • Contact: Fang Yang E-mail:lishanshan3131@163.com;yangf82@sina.com
  • Supported by:
    National Natural Science Foundation of China(81670979)

Abstract:

The interaction among oral microbes is crucial for the occurrence of oral diseases. Streptococcus mutans and Candida albicans are common pathogenic microorganisms of childhood caries. The two kinds of microorganisms can cooperate or antagonize each other to cause caries through extracellular enzymes, quorum sensing signaling molecules, and compound metabolism. In this paper, the caries-inducing mechanism and synergistic and inhibitory effects in biofilm and the newly developed mixed biofilm as antibacterial therapy were reviewed. From the perspective of biofilm, the relationship between the two microorganisms and the occurrence of caries and the methods to inhibit the biofilm activity were explained. This work provides a new perspective for the development of new treatment strategies for dental caries.

Key words: caries, Streptococcus mutans, Candida albicans, symbiosis, inhibition, biofilm

CLC Number: 

  • R 780.2

TrendMD: 
1 Listl S, Galloway J, Mossey PA, et al. Global economic impact of dental diseases[J]. J Dent Res, 2015, 94(10): 1355-1361.
2 Yoo HJ, Jwa SK. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm[J]. Arch Oral Biol, 2018, 88: 42-46.
3 Kleinberg I. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis[J]. Crit Rev Oral Biol Med, 2002, 13(2): 108-125.
4 Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process[J]. Community Dent Oral Epidemiol, 2005, 33(4): 248-255.
5 辛秉昌, 徐仰龙, 李艳莉, 等. 生物膜中不同种属微生物的交流与合作[J]. 中国科学: 生命科学, 2010, 40(11): 1002-1013.
Xin BC, Xu YL, Li YL, et al. Communication and cooperation of different microorganisms within biofilms[J]. Sci Sin (Vitae), 2010, 40(11): 1002-1013.
6 Raja M, Hannan A, Ali K. Association of oral candidal carriage with dental caries in children[J]. Caries Res, 2010, 44(3): 272-276.
7 Metwalli KH, Khan SA, Krom BP, et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation[J]. PLoS Pathog, 2013, 9(10): e100-3616.
8 Xiao J, Klein MI, Falsetta ML, et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm[J]. PLoS Pathog, 2012, 8(4): e1002623.
9 Falsetta ML, Klein MI, Lemos JA, et al. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo [J]. Antimicrob Agents Chemother, 2012, 56(12): 6201-6211.
10 Islam B, Khan SN, Khan AU. Dental caries: from infection to prevention[J]. Med Sci Monit, 2007, 13(11): RA196-RA203.
11 徐蓉蓉, 王斌, 葛久禹. 口腔链球菌密度感应信号系统comE基因及luxS基因的检测分析[J]. 华西口腔医学杂志, 2011, 29(4): 355-357.
Xu RR, Wang B, Ge JY. Detection and analysis of comE and luxS genes in quorum sensing signal pathway from Streptococcus oralis [J]. West China J Stomatol, 2011, 29(4): 355-357.
12 Rodrigues CF, Rodrigues ME, Silva S, et al. Candida glabrata biofilms: how far have we come[J]. J Fungi (Basel), 2017, 3(1): 11.
13 Chevalier M, Ranque S, Prêcheur I. Oral fungal-bacterial biofilm models in vitro: a review[J]. Med Mycol, 2018, 56(6): 653-667.
14 Jacobsen ID, Wilson D, Wächtler B, et al. Candida albicans dimorphism as a therapeutic target[J]. Expert Rev Anti Infect Ther, 2012, 10(1): 85-93.
15 Jin Y, Samaranayake LP, Samaranayake Y, et al. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars[J]. Arch Oral Biol, 2004, 49(10): 789-798.
16 袁有华, 白丽. 分子生物学技术在念珠菌分类鉴定中的应用[J]. 中华检验医学杂志, 2008, 31(2): 220-222.
Yuan YH, Bai L.Application of molecular biology techniques in the classification and identification of Candida [J]. Chin J Lab Med, 2008, 31(2): 220-222.
17 Klinke T, Guggenheim B, Klimm W, et al. Dental caries in rats associated with Candida albicans [J]. Caries Res, 2011, 45(2): 100-106.
18 Sztajer H, Szafranski SP, Tomasch J, et al. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans [J]. ISME J, 2014, 8(11): 2256-2271.
19 Xiao J, Moon Y, Li LH, et al. Candida albicans carriage in children with severe early childhood caries (S-ECC) and maternal relatedness[J]. PLoS One, 2016, 11(10): e0164242.
20 Falsetta ML, Klein MI, Colonne PM, et al. Symbio-tic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo [J]. Infect Immun, 2014, 82(5): 1968-1981.
21 Kim D, Sengupta A, Niepa TH, et al. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites[J]. Sci Rep, 2017, 7: 41332.
22 Willems HM, Kos K, Jabra-Rizk MA, et al. Candida albicans in oral biofilms could prevent caries[J]. Pathog Dis, 2016, 74(5): ftw039.
23 Hwang G, Marsh G, Gao L, et al. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans [J]. J Dent Res, 2015, 94(9): 1310-1317.
24 Marsh PD. Sugar, fluoride, pH and microbial homeostasis in dental plaque[J]. Proc Finn Dent Soc, 1991, 87(4): 515-525.
25 王峥, 周学东, 任彪. 白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究[J]. 四川大学学报(医学版), 2020, 51(6): 742-748.
Wang Z, Zhou XD, Ren B. Ergosterol pathway of Candida albicans promotes the growth and cariogenic virulence of Streptococcus mutans [J]. J Si-chuan Univ (Med Sci), 2020, 51(6): 742-748.
26 Cury JA, Rebelo MA, Del Bel Cury AA, et al. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose[J]. Caries Res, 2000, 34(6): 491-497.
27 Ribeiro CC, Tabchoury CP, Del Bel Cury AA, et al. Effect of starch on the cariogenic potential of sucrose[J]. Br J Nutr, 2005, 94(1): 44-50.
28 Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol[J]. Appl Environ Microbiol, 2001, 67(7): 2982-2992.
29 Fernandes RA, Monteiro DR, Arias LS, et al. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation[J]. Biofouling, 2016, 32(3): 329-338.
30 Barbosa JO, Rossoni RD, Vilela SF, et al. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans [J]. PLoS One, 2016, 11(3): e0150457.
31 Takenaka S, Ohsumi T, Noiri Y. Evidence-based stra-tegy for dental biofilms: current evidence of mouthwashes on dental biofilm and gingivitis[J]. Jpn Dent Sci Rev, 2019, 55(1): 33-40.
32 Rahmani-Badi A, Sepehr S, Babaie-Naiej H. A combination of cis-2-decenoic acid and chlorhexidine removes dental plaque[J]. Arch Oral Biol, 2015, 60(11): 1655-1661.
33 Monteiro DR, Arias LS, Fernandes RA, et al. Role of tyrosol on Candida albicans, Candida glabrata and Streptococcus mutans biofilms developed on different surfaces[J]. Am J Dent, 2017, 30(1): 35-39.
34 Yassin SA, German MJ, Rolland SL, et al. Inhibition of multispecies biofilms by a fluoride-releasing dental prosthesis copolymer[J]. J Dent, 2016, 48: 62-70.
35 Fumes AC, Romualdo PC, Monteiro RM, et al. Influence of pre-irradiation time employed in antimicrobial photodynamic therapy with diode laser[J]. Lasers Med Sci, 2018, 33(1): 67-73.
36 Trigo-Gutierrez JK, Sanitá PV, Tedesco AC, et al. Effect of chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm[J]. Photodiagnosis Photodyn Ther, 2018, 24: 212-219.
37 Kim D, Liu Y, Benhamou RI, et al. Bacterial-derived exopolysaccharides enhance antifungal drug tolerance in a cross-kingdom oral biofilm[J]. ISME J, 2018, 12(6): 1427-1442.
38 Feldman M, Shenderovich J, Lavy E, et al. A sustained-release membrane of thiazolidinedione-8: effect on formation of a candida/bacteria mixed biofilm on hydroxyapatite in a continuous flow model[J]. Biomed Res Int, 2017, 2017: 3510124.
39 Elshinawy MI, Al-Madboly LA, Ghoneim WM, et al. Synergistic effect of newly introduced root canal medicaments; ozonated olive oil and chitosan nano-particles, against persistent endodontic pathogens[J]. Front Microbiol, 2018, 9: 1371.
40 Kıvanç M, Barutca B, Koparal AT, et al. Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability[J]. Mater Sci Eng C Mater Biol Appl, 2018, 91: 115-124.
[1] Wang Gang,Chen Zhuo.. Reduction of the risk of caries after interproximal enamel reduction [J]. Int J Stomatol, 2023, 50(4): 395-400.
[2] Gao Ruofan,Xia Bin.. Severe early childhood caries management based on chronic disease management [J]. Int J Stomatol, 2023, 50(3): 341-346.
[3] Lin Kaifeng,Wang Xinyue,Zou Jing,Zhang Qiong.. Clinical related factors influencing the retention rate of pit and fissure sealant and improvement countermeasures [J]. Int J Stomatol, 2022, 49(6): 699-706.
[4] Gong Tao,Li Yuqing,Zhou Xuedong.. Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans [J]. Int J Stomatol, 2022, 49(5): 506-510.
[5] Yang Sirui,Ren Biao,Peng Xian,Xu Xin. Research progress on drug synergism with fluconazole in fluconazole-resistant Candida albicans [J]. Int J Stomatol, 2022, 49(5): 511-520.
[6] Liu Qianxi,Wu Jiayi,Ren Biao,Huang Ruijie. Research progress on the interactions between Enterococcus faecalis and other oral microorganisms [J]. Int J Stomatol, 2022, 49(3): 290-295.
[7] Zhu Jinyi,Fan Qi,Zhou Yuan,Zou Jing,Huang Ruijie. Research progress of salivary proteins as predictive biomarkers for early childhood caries [J]. Int J Stomatol, 2022, 49(2): 212-219.
[8] Liu Chengcheng, Ding Yi. Clinical diagnosis, treatment, and management strategies of common oral infectious disease during pregnancy [J]. Int J Stomatol, 2021, 48(6): 621-628.
[9] Huang Peiqing,Peng Xian,Xu Xin. Volatile sulfur compounds and its role in the management of intra-oral halitosis [J]. Int J Stomatol, 2021, 48(5): 592-599.
[10] Fan Yu,Cheng Lei. Smoking affects the oral microenvironment and its role in the progression of dental caries [J]. Int J Stomatol, 2021, 48(5): 609-613.
[11] Li Shijia,Chen Qiuyu,Zou Jing,Huang Ruijie. Effect of nicotine on the growth of oral bacteria in single or mixed species [J]. Int J Stomatol, 2021, 48(3): 305-311.
[12] Xiong Kaixin,Zou Ling. Correlation between Candida albicans, Actinomyces viscosus, and root caries [J]. Int J Stomatol, 2021, 48(2): 187-191.
[13] Li Fan,Zhang Lijuan,Tan Kaixuan,Zhang Ying,Lu Jie,Li Shanshan,Yang Fang. Antimicrobial effect of chlorhexidine on Candida albicans in vitro according to D2O-labeled single-cell Raman micro-spectroscopy [J]. Int J Stomatol, 2021, 48(1): 35-40.
[14] Yang Zhilei,Liu Baoying. Research progress on the microecology of dental plaque in caries [J]. Int J Stomatol, 2020, 47(5): 506-514.
[15] Deng Xiaoyu,Zhang Yunhan,Zou Jing. Early biological management of early childhood caries [J]. Int J Stomatol, 2020, 47(5): 581-588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .