国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (5): 519-522.doi: 10.7518/gjkq.2017.05.005

• 牙周专栏 • 上一篇    下一篇

牙龈素促进牙龈卟啉单胞菌免疫逃逸的机制

李格格1, 潘佳慧1, 唐秋玲1, 刘歆婵2, 侯玉帛1, 于维先1   

  1. 1.吉林大学口腔医院牙周病科 吉林省牙发育及颌骨重塑与再生重点实验室 长春 130021;
    2.吉林大学口腔医院种植科 吉林省牙发育及颌骨重塑与再生重点实验室 长春 130021
  • 收稿日期:2016-11-19 修回日期:2017-05-16 出版日期:2017-09-01 发布日期:2017-09-01
  • 通讯作者: 于维先,教授,博士,Email:yu-wei-xian@163.com
  • 作者简介:李格格,硕士,Email:1099075958@qq.com
  • 基金资助:

    吉林省科技厅自然科学基金项目(20150101076JC); 吉林省卫生技术创新项目(2016J073); 国家自然科学基金面上项目(81- 570983)

Immune evasion strategies of Porphyromonas gingivalis via gingipains

Li Gege1, Pan Jiahui1, Tang Qiuling1, Liu Xinchan2, Hou Yubo1, Yu Weixian1   

  1. 1. Dept. of Periodontology, Hospital of Stomatology, Jilin University; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China;
    2. Dept. of Dental Implantology, Hospital of Stomatology, Jilin University;Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2016-11-19 Revised:2017-05-16 Online:2017-09-01 Published:2017-09-01
  • Supported by:

    ; This study was supported by Funding from the Jilin Provincial Science and Technology Department(20150101076JC), Jilin Provincial Technology Innovation Projects(2016J073) and National Natural Science Foundation of China(81570983).

摘要:

有关牙周炎病因的关键致病菌假说近年来引起学者们的关注,该假说认为牙龈卟啉单胞菌在牙周炎的发病过程中发挥着重要作用,是牙周炎的关键致病菌。牙龈素是牙龈卟啉单胞菌产生的重要致病因子之一,它可以协助牙龈卟啉单胞菌逃逸巨噬细胞、中性粒细胞及补体系统的杀伤作用。本文就牙龈素促进牙龈卟啉单胞菌免疫逃逸的机制相关研究进展作一综述,对这一机制的深入了解有助于进一步理解牙龈素的致病机制,同时也可以为牙周炎的防治探索新的途径。

关键词: 牙周炎, 牙龈卟啉单胞菌, 牙龈素, 免疫逃逸

Abstract:

The keystone-pathogen hypothesis about the etiology of periodontitis has attracted the attention of scholars in recent years. In this view, Porphyromonas gingivalis is considered as a keystone pathogen in the pathogenic progression of periodontitis. Gingipains generated by Porphyromonas gingivalis are key virulence factors, which could assist Porphyromonas gingivalis to escape the killing effects of macrophages, neutrophils and complement system. The aim of this literature review is to discuss the immune evasion strategies ofPorphyromonas gingivalis via gingipains. The exposition of this important mechanism may provide a further understanding of the pathogenic mechanism of gingipains, and lay a foundation for exploring new methods for the prevention and treatment of periodontitis.

Key words: periodontitis, Prophyromonas gingivalis, gingipain, immune evasion

中图分类号: 

  • R780.2
[1] Hajishengallis G, Darveau RP, Curtis MA. The keys-tone-pathogen hypothesis[J]. Nat Rev Microbiol, 2012, 10(10):717-725.
[2] Hajishengallis G, Lamont RJ. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts[J]. Trends Microbiol, 2016, 24(6):477-489.
[3] Hajishengallis G. Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1):30-44.
[4] Benedyk M, Mydel PM, Delaleu N, et al. Gingipains: critical factors in the development of aspiration pneumonia caused by Porphyromonas gingivalis [J]. J Innate Immun, 2016, 8(2):185-198.
[5] Potempa J, Pike R, Travis J. Titration and mapping of the active site of cysteine proteinases from Por-phyromonas gingivalis (gingipains) using peptidyl chloromethanes[J]. Biol Chem, 1997, 378(3/4):223- 230.
[6] Potempa J, Pike R, Travis J. The multiple forms of trypsin-like activity present in various strains of Por-phyromonas gingivalis are due to the presence of either Arg-gingipain or Lys-gingipain[J]. Infect Im-mun, 1995, 63(4):1176-1182.
[7] Wang M, Krauss JL, Domon H, et al. Microbial hijacking of complement-toll-like receptor crosstalk [J]. Sci Signal, 2010, 3(109):ra11.
[8] Hajishengallis G, Abe T, Maekawa T, et al. Role of complement in host-microbe homeostasis of the pe-riodontium[J]. Semin Immunol, 2013, 25(1):65-72.
[9] Hussain QA, McKay IJ, Gonzales-Marin C, et al. Detection of adrenomedullin and nitric oxide in dif-ferent forms of periodontal disease[J]. J Periodont Res, 2016, 51(1):16-25.
[10] Liang S, Krauss JL, Domon H, et al. The C5a rece-ptor impairs IL-12-dependent clearance of Porphyro-monas gingivalis and is required for induction of periodontal bone loss[J]. J Immunol, 2011, 186(2): 869-877.
[11] Hawlisch H, Belkaid Y, Baelder R, et al. C5a nega-tively regulates toll-like receptor 4-induced immune responses[J]. Immunity, 2005, 22(4):415-426.
[12] Wu Z, Liu Y, Dong W, et al. CD14 in the TLRs signaling pathway is associated with the resistance to E. coli F18 in Chinese domestic weaned piglets[J]. Sci Rep, 2016, 6:24611.
[13] Holden JA, Attard TJ, Laughton KM, et al. Por-phyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines[J]. Infect Immun, 2014, 82(10):4190-4203.
[14] Lam RS, O’Brien-Simpson NM, Holden JA, et al. Unprimed, M1 and M2 macrophages differentially interact with Porphyromonas gingivalis [J]. PLoS ONE, 2016, 11(7):e0158629.
[15] Wilensky A, Tzach-Nahman R, Potempa J, et al. Porphyromonas gingivalis gingipains selectively reduce CD14 expression, leading to macrophage hyporesponsiveness to bacterial infection[J]. J Innate Immun, 2015, 7(2):127-135.
[16] Abe T, Hosur KB, Hajishengallis E, et al. Local com-plement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor(CD88) antagonist [J]. J Immunol, 2012, 189(11):5442-5448.
[17] Kataoka S, Baba A, Suda Y, et al. A novel, potent dual inhibitor of Arg-gingipains and Lys-gingipain as a promising agent for periodontal disease therapy [J]. FASEB J, 2014, 28(8):3564-3578.
[18] Reynolds EC, O’Brien-Simpson N, Rowe T, et al. Prospects for treatment of Porphyromonas gingiva-lis -mediated disease—immune-based therapy[J]. J Oral Microbiol, 2015, 7:29125.
[1] 郭淑娟,刘倩,丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134.
[2] 吕慧欣,杜留熠,王鹞,于维先,任静宜,顾芯铭,周延民. 炎症小体在牙周炎中的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 186-190.
[3] 聂然,郭天奇,李雪,裴婷婷,秦勤,周延民. 与牙周炎相关的组织蛋白酶研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 197-202.
[4] 王鹞,吕慧欣,杜留熠,顾芯铭,任静宜,于维先,周延民. 软脑膜在外周炎症影响神经炎症过程中的作用[J]. 国际口腔医学杂志, 2019, 46(2): 223-227.
[5] 杨卓,张盛丹,刘程程,丁一. 侵袭性牙周炎唾液诊断标记物的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 55-61.
[6] 许彩薇,薛毅,吴仲寅. 骨硬化蛋白与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 703-709.
[7] 田江雪,莫龙义,贾小玥,刘程程,徐欣. 转化生长因子β在牙周炎发生发展中的作用及其机制[J]. 国际口腔医学杂志, 2018, 45(5): 553-559.
[8] 毛璐,鞠侯雨,任国欣. 程序性细胞死亡受体-1与其配体信号通路的调控及其在头颈鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 560-565.
[9] 姜懿轩,莫龙义,贾小玥,徐欣,刘程程. 植物雌激素防治牙周炎的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 571-578.
[10] 黄海霞, 兰玉燕, 张昊, 潘兰兰, 郭玲, 刘敏. 慢性牙周炎患者种植修复后种植体牙周指数及龈沟液炎性因子水平的变化研究[J]. 国际口腔医学杂志, 2018, 45(4): 396-402.
[11] 郑直, 颜世果. 疱疹病毒与牙周炎的关系[J]. 国际口腔医学杂志, 2018, 45(2): 224-227.
[12] 张鹏, 丁一, 王琪. 炎性衰老在糖尿病牙周炎中的作用机制及研究现状[J]. 国际口腔医学杂志, 2017, 44(6): 664-668.
[13] 吴琪, 刘程程, 郑黎薇, 李继遥, 周学东, 徐欣. 肠道微生物调控骨代谢的研究进展[J]. 国际口腔医学杂志, 2017, 44(6): 628-635.
[14] 唐秋玲, 李格格, 潘佳慧, 侯玉帛, 孟阳, 于维先. 细胞焦亡与牙龈卟啉单胞菌的关系及其在牙周病发生发展中的作用机制[J]. 国际口腔医学杂志, 2017, 44(6): 660-663.
[15] 李琳, 王丹, 赵曼竹, 唐明. 慢性牙周炎与神经退行性疾病相关性的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 514-518.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .