国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (1): 108-113.doi: 10.7518/gjkq.2017.01.022

• ·综述· • 上一篇    下一篇

微小RNA在骨分化过程中的作用机制

刘润恒,刘于冬,陈卓凡   

  1. 中山大学光华口腔医学院•附属口腔医院种植科广东省口腔医学重点实验室 广州 510055
  • 收稿日期:2016-02-11 出版日期:2017-01-01 发布日期:2017-01-01
  • 通讯作者: 陈卓凡,教授,博士,Email:dentistczf@163.com
  • 作者简介:刘润恒,博士,Email:1207736451@qq.com
  • 基金资助:
    国家自然科学基金(81470783)

Role and mechanism of microRNA in osteogenic differentiation

Liu Runheng, Liu Yudong, Chen Zhuofan.   

  1. Dept. of Implantation, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2016-02-11 Online:2017-01-01 Published:2017-01-01

摘要: 在口腔种植治疗过程中常常会遇到骨量不足的问题,植入骨替代材料是目前临床上最主要的重建骨缺损方法之一,因此骨替代材料的成骨性能及其分子机制成为了研究热点。微小RNA(miRNA)是一种短链非编码RNA,通过转录后调控细胞分化、增殖、程序性死亡等病理生理过程。miRNA可影响成骨相关因子的表达和激活成骨相关信号转导通路中的信号转导,从而对骨组织动态改建过程进行调控。本文就miRNA与成骨细胞特异性转录因子、核心结合因子-α1基因、Smad基因、转化生长因子-β诱导因子,与骨形态发生蛋白信号转导通路、无翅型小鼠乳房肿瘤病毒整合位点家族信号转导通路、促丝裂原激活蛋白激酶信号转导通路、成脂信号转导通路以及miRNA与口腔相关材料和miRNA在骨缺损修复中的应用研究进展作一综述。

关键词: 微小RNA, 骨分化, 骨分化调节因子, 信号转导通路

Abstract: The problem of insufficient bone usually occurs during oral implantology treatment. The use of bone substitute materials is one of the most important methods to reconstruct bone defects clinically. Therefore, the properties and molecular mechanisms of these bone substitute materials have been a controversial topic in research. MicroRNA(miRNA) is a short, non-coding RNA. It regulates cell differentiation, proliferation, apoptosis, and other pathophysiological processes by post-transcription. In addition, miRNA can regulate the dynamic remodeling of bone tissue by affecting the expression of osteogenic factors and the activation of osteogenic signal transduction pathway. This paper reviews the role of miRNA in osterix, core binding factor α1, Smad, and transforming growth factor-β. The regulating function of miRNA in the signal transduction pathways of bone morphogenetic protein, wingless-type mice mammary tumor virus integration site family, mitogen-activated protein kinase, and adipogenesis is investigated. The relation of miRNA with dental materials and its application in repairing bone defects are also reviewed.

Key words: microRNA, osteogenic differentiation, regulatory factor of osteogenic differentiation, signal transduction pathway

中图分类号: 

  • Q786
[1] Sriram M, Sainitya R, Kalyanaraman V, et al. Bio-materials mediated microRNA delivery for bone tissue engineering[J]. Int J Biol Macromol, 2015, 74: 404-412.
[2] Dong S, Yang B, Guo H, et al. MicroRNAs regulate osteogenesis and chondrogenesis[J]. Biochem Bio-phys Res Commun, 2012, 418(4):587-591.
[3] Hutvágner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA[J]. Science, 2001, 293(5531):834-838.
[4] Bartel DP. MicroRNAs: genomics, biogenesis, me-chanism, and function[J]. Cell, 2004, 116(2):281- 297.
[5] Hassan MQ, Tye CE, Stein GS, et al. Non-coding RNAs: epigenetic regulators of bone development and homeostasis[J]. Bone, 2015, 81:746-756.
[6] Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone for-mation[J]. Cell, 2002, 108(1):17-29.
[7] Baglìo SR, Devescovi V, Granchi D, et al. Micro-RNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic dif-ferentiation reveals osterix regulation by miR-31[J]. Gene, 2013, 527(1):321-331.
[8] Shi K, Lu J, Zhao Y, et al. MicroRNA-214 suppre-sses osteogenic differentiation of C2C12 myoblast cells by targeting osterix[J]. Bone, 2013, 55(2):487- 494.
[9] Li E, Zhang J, Yuan T, et al. MiR-143 suppresses osteogenic differentiation by targeting osterix[J]. Mol Cell Biochem, 2014, 390(1/2):69-74.
[10] Liu H, Sun Q, Wan C, et al. MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2[J]. J Cell Physiol, 2014, 229(10):1494-1502.
[11] Zuo B, Zhu J, Li J, et al. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2[J]. J Bone Miner Res, 2015, 30(2):330-345.
[12] Panchision DM, Pickel JM, Studer L, et al. Sequen-tial actions of BMP receptors control neural pre-cursor cell production and fate[J]. Genes Dev, 2001, 15(16):2094-2110.
[13] Kato RB, Roy B, de Oliveira FS, et al. Nanotopo-graphy directs mesenchymal stem cells to osteoblast lineage through regulation of microRNA-SMAD-BMP-2 circuit[J]. J Cell Physiol, 2014, 229(11): 1690-1696.
[14] Wu T, Zhou H, Hong Y, et al. miR-30 family mem-bers negatively regulate osteoblast differentiation[J]. J Biol Chem, 2012, 287(10):7503-7511.
[15] Krzeszinski JY, Wei W, Huynh H, et al. miR-34a blocks osteoporosis and bone metastasis by inhibi-ting osteoclastogenesis and Tgif2[J]. Nature, 2014, 512(7515):431-435.
[16] Moorthi A, Vimalraj S, Avani C, et al. Expression of microRNA-30c and its target genes in human osteo-blastic cells by nano-bioglass ceramic-treatment[J]. Int J Biol Macromol, 2013, 56:181-185.
[17] Kureel J, Dixit M, Tyagi AM, et al. miR-542-3p suppresses osteoblast cell proliferation and differen-tiation, targets BMP-7 signaling and inhibits bone formation[J]. Cell Death Dis, 2014, 5:e1050.
[18] Hupkes M, Sotoca AM, Hendriks JM, et al. Micro-RNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells[J]. BMC Mol Biol, 2014, 15:1.
[19] Liao YH, Chang YH, Sung LY, et al. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b[J]. Bioma-terials, 2014, 35(18):4901-4910.
[20] Kieslinger M, Folberth S, Dobreva G, et al. EBF2 regulates osteoblast-dependent differentiation of osteoclasts[J]. Dev Cell, 2005, 9(6):757-767.
[21] Wang T, Xu Z. miR-27 promotes osteoblast diffe-rentiation by modulating Wnt signaling[J]. Biochem Biophys Res Commun, 2010, 402(2):186-189.
[22] Meng YB, Li X, Li ZY, et al. microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway[J]. J Orthop Res, 2015, 33(7):957-964.
[23] Wang Q, Cai J, Cai XH, et al. miR-346 regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting the Wnt/β-catenin pathway[J]. PLoS ONE, 2013, 8(9):e72266.
[24] Vimalraj S, Selvamurugan N. MicroRNAs expre-ssion and their regulatory networks during mesen-chymal stem cells differentiation toward osteoblasts [J]. Int J Biol Macromol, 2014, 66:194-202.
[25] Zhang Z, Wang J, Lü X. An integrated study of natural hydroxyapatite-induced osteogenic dif-ferentiation of mesenchymal stem cells using tran-scriptomics, proteomics and microRNA analyses[J]. Biomed Mater, 2014, 9(4):045005.
[26] Mei Y, Bian C, Li J, et al. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation[J]. J Cell Biochem, 2013, 114(6): 1374-1384.
[27] Elabd C, Basillais A, Beaupied H, et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis[J]. Stem Cells, 2008, 26(9):2399-2407.
[28] Li W, Yuan Y, Huang L, et al. Metformin alters the expression profiles of microRNAs in human pan-creatic cancer cells[J]. Diabetes Res Clin Pract, 2012, 96(2):187-195.
[29] Sun J, Wang Y, Li Y, et al. Downregulation of PPARγ by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential[J]. J Transl Med, 2014, 12:168.
[30] Li CJ, Cheng P, Liang MK, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation[J]. J Clin Invest, 2015, 125 (4):1509-1522.
[31] Palmieri A, Pezzetti F, Brunelli G, et al. Anorganic bovine bone(Bio-Oss) regulates miRNA of osteo-blast-like cells[J]. Int J Periodontics Restorative Dent, 2010, 30(1):83-87.
[32] Palmieri A, Pezzetti F, Avantaggiato A, et al. Ti-tanium acts on osteoblast translational process[J]. J Oral Implantol, 2008, 34(4):190-195.
[33] Palmieri A, Pezzetti F, Brunelli G, et al. Zirconium oxide regulates RNA interfering of osteoblast-like cells[J]. J Mater Sci Mater Med, 2008, 19(6):2471- 2476.
[34] Chakravorty N, Ivanovski S, Prasadam I, et al. The microRNA expression signature on modified ti-tanium implant surfaces influences genetic me-chanisms leading to osteogenic differentiation[J]. Acta Biomater, 2012, 8(9):3516-3523.
[35] Wang Z, Zhang D, Hu Z, et al. MicroRNA-26a-modified adipose-derived stem cells incorporated with a porous hydroxyapatite scaffold improve the repair of bone defects[J]. Mol Med Rep, 2015, 12(3): 3345-3350.
[36] Deng Y, Zhou H, Gu P, et al. Repair of canine me-dial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells[J]. Invest Ophthal-mol Vis Sci, 2014, 55(9):6016-6023.
[37] Li KC, Chang YH, Yeh CL, et al. Healing of osteo-porotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges[J]. Biomaterials, 2016, 74:155-166.
(本文采编 王晴)
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[3] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[4] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[5] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[6] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[7] 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36.
[8] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[9] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
[10] 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660.
[11] 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615.
[12] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[13] 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83.
[14] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[15] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .