Int J Stomatol ›› 2025, Vol. 52 ›› Issue (1): 34-41.doi: 10.7518/gjkq.2025007
• Oral Oncology • Previous Articles Next Articles
CLC Number:
1 | Lin Y, Qi Y, Jiang MJ, et al. Lactic acid-induced M2-like macrophages facilitate tumor cell migration and invasion via the GPNMB/CD44 axis in oral squamous cell carcinoma[J]. Int Immunopharmacol, 2023, 124(Pt B): 110972. |
2 | Flügge T, Gaudin R, Sabatakakis A, et al. Detection of oral squamous cell carcinoma in clinical photographs using a vision transformer[J]. Sci Rep, 2023, 13(1): 2296. |
3 | Chinn SB, Myers JN. Oral cavity carcinoma: current management, controversies, and future directions[J]. J Clin Oncol, 2015, 33(29): 3269-3276. |
4 | Mohd Afandi MF, Liew YT. Floor of mouth squamous cell carcinoma presenting as an abscess[J].Indian J Otolaryngol Head Neck Surg, 2023, 75(2): 902-904. |
5 | Sarode GS, Sarode SC, Maniyar N, et al. Oral cancer databases: a comprehensive review[J]. J Oral Pathol Med, 2018, 47(6): 547-556. |
6 | Almangush A, Mäkitie AA, Triantafyllou A, et al. Staging and grading of oral squamous cell carcinoma: an update[J]. Oral Oncol, 2020, 107: 104799. |
7 | Zhang WB, Wang Y, Mao C, et al. Oral squamous cell carcinoma with metastasis to the parotid lymph node[J]. Chin J Dent Res, 2019, 22(3): 175-179. |
8 | Pekarek L, Garrido-Gil MJ, Sánchez-Cendra A, et al. Emerging histological and serological biomar-kers in oral squamous cell carcinoma: applications in diagnosis, prognosis evaluation and personalized therapeutics (Review) [J]. Oncol Rep, 2023, 50(6): 213. |
9 | Mishra MK, Gupta S, Shivangi, et al. The repertoire of mutational signatures in tobacco- and non-tobacco-induced oral cancer[J]. Clin Transl Oncol, 2023, 25(12): 3332-3344. |
10 | Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer[J]. J Clin Oncol, 2010, 28(6): 1075-1083. |
11 | Lakshminarayana S, Augustine D, Rao RS, et al. Molecular pathways of oral cancer that predict prognosis and survival: a systematic review[J]. J Carcinog, 2018, 17: 7. |
12 | Roy NK, Monisha J, Padmavathi G, et al. Isoform-specific role of Akt in oral squamous cell carcinoma[J]. Biomolecules, 2019, 9(7): 253. |
13 | Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination[J]. Development, 2016, 143(17): 3050-3060. |
14 | Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking[J]. Nat Rev Mol Cell Biol, 2019, 20(9): 515-534. |
15 | Hirsch E, Gulluni F, Martini M. Phosphoinositides in cell proliferation and metabolism[J]. Adv Biol Regul, 2020, 75: 100693. |
16 | Li H, Prever L, Hirsch E, et al. Targeting PI3K/AKT/mTOR signaling pathway in breast cancer[J]. Cancers (Basel), 2021, 13(14): 3517. |
17 | Xu ZR, Han X, Ou DM, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy[J]. Appl Microbiol Biotechnol, 2020, 104(2): 575-587. |
18 | Zhang YQ, Kwok-Shing Ng P, Kucherlapati M, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations[J]. Cancer Cell, 2017, 31(6): 820-832.e3. |
19 | Xu J, Li Y, Kang M, et al. Multiple forms of cell death: a focus on the PI3K/AKT pathway[J]. J Cell Physiol, 2023, 238(9): 2026-2038. |
20 | Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, et al. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: possibilities for therapeutic interventions either as single agents or in combination with conventio-nal therapies[J]. IUBMB Life, 2021, 73(4): 618-642. |
21 | Teng Y, Fan YB, Ma JW, et al. The PI3K/Akt pathway: emerging roles in skin homeostasis and a group of non-malignant skin disorders[J]. Cells, 2021, 10(5): 1219. |
22 | Zhang Q, Luo SM, Luo Y, et al. Upregulation of KHDC1L promotes the proliferation and inhibits apoptosis in head and neck squamous cell carcinoma[J]. Epigenetics, 2023, 18(1): 2175168. |
23 | Hu JL, Li G, Liu ZF, et al. Bicarbonate transporter SLC4A7 promotes EMT and metastasis of HNSCC by activating the PI3K/AKT/mTOR signaling pathway[J]. Mol Carcinog, 2023, 62(5): 628-640. |
24 | Sun Y, Yang XT, Guan SL, et al. The role of phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) in regulating the progression of oral squamous cell carcinoma[J]. Arch Oral Biol, 2023, 156: 105810. |
25 | Yun HM, Kwon YJ, Kim E, et al. Machilin D promotes apoptosis and autophagy, and inhibits necroptosis in human oral squamous cell carcinoma cells[J]. Int J Mol Sci, 2023, 24(5): 4576. |
26 | Xu HY, Chen GZ, Niu QF, et al. Spindle and kinetochore-associated complex 3 promotes cell growth via the PI3K/AKT/GSK3β and PI3K/AKT/FOXO1 pathways and is a potential prognostic biomarker for oral squamous cell carcinoma[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2022, 134(5): 599-614. |
27 | Lee MJ, Jin N, Grandis JR, et al. Alterations and molecular targeting of the GSK-3 regulator, PI3K, in head and neck cancer[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(6): 118679. |
28 | Cohen Y, Goldenberg-Cohen N, Shalmon B, et al. Mutational analysis of PTEN/PIK3CA/AKT pathway in oral squamous cell carcinoma[J]. Oral Oncol, 2011, 47(10): 946-950. |
29 | Starzyńska A, Sejda A, Adamska P, et al. Prognostic value of the PIK3CA, AKT, and PTEN mutations in oral squamous cell carcinoma: literature review[J]. Arch Med Sci, 2021, 17(1): 207-217. |
30 | Kozaki K, Imoto I, Pimkhaokham A, et al. PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma[J]. Cancer Sci, 2006, 97(12): 1351-1358. |
31 | Wang Y, Lin L, Xu H, et al. Genetic variants in AKT1 gene were associated with risk and survival of OSCC in Chinese Han population[J]. J Oral Pathol Med, 2015, 44(1): 45-50. |
32 | O’Donnell JS, Massi D, Teng MWL, et al. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux[J]. Semin Cancer Biol, 2018, 48: 91-103. |
33 | Mafi S, Mansoori B, Taeb S, et al. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment[J]. Front Immunol, 2021, 12: 774-103. |
34 | Peng WY, Chen JQ, Liu CW, et al. Loss of PTEN promotes resistance to T cell-mediated immunothe-rapy[J]. Cancer Discov, 2016, 6(2): 202-216. |
35 | Aggarwal S, John S, Sapra L, et al. Targeted disruption of PI3K/Akt/mTOR signaling pathway, via PI3K inhibitors, promotes growth inhibitory effects in oral cancer cells[J]. Cancer Chemother Pharmacol, 2019, 83(3): 451-461. |
36 | Deng L, Qian GQ, Zhang S, et al. Inhibition of mTOR complex 1/p70 S6 kinase signaling elevates PD-L1 levels in human cancer cells through enhan-cing protein stabilization accompanied with enhan-ced β-TrCP degradation[J]. Oncogene, 2019, 38(35): 6270-6282. |
37 | Zhang C, Duan YQ, Xia MH, et al. TFEB mediates immune evasion and resistance to mTOR inhibition of renal cell carcinoma via induction of PD-L1[J]. Clin Cancer Res, 2019, 25(22): 6827-6838. |
38 | Moore EC, Cash HA, Caruso AM, et al. Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers[J]. Cancer Immunol Res, 2016, 4(7): 611-620. |
39 | Marijt KA, Sluijter M, Blijleven L, et al. Metabolic stress in cancer cells induces immune escape th-rough a PI3K-dependent blockade of IFNγ receptor signaling[J]. J Immunother Cancer, 2019, 7(1): 152. |
40 | Sivaram N, McLaughlin PA, Han HV, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer[J]. J Clin Invest, 2019, 129(8): 3264-3276. |
41 | André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. N Engl J Med, 2019, 380(20): 1929-1940. |
42 | Chen H, Si Y, Wen J, et al. P110α inhibitor alpelisib exhibits a synergistic effect with pyrotinib and reverses pyrotinib resistant in HER2+ breast cancer[J]. Neoplasia, 2023, 43: 100913. |
43 | Dunn LA, Riaz N, Fury MG, et al. A phase 1b study of cetuximab and BYL719 (alpelisib) concurrent with intensity modulated radiation therapy in stage Ⅲ-ⅣB head and neck squamous cell carcinoma[J]. Int J Radiat Oncol Biol Phys, 2020, 106(3): 564-570. |
44 | Yang CY, Liu CR, Chang IY, et al. Cotargeting CHK1 and PI3K synergistically suppresses tumor growth of oral cavity squamous cell carcinoma in patient-derived xenografts[J]. Cancers (Basel), 2020, 12(7): 1726. |
45 | Chuang FC, Wang CC, Chen JH, et al. PI3k inhibitors (BKM120 and BYL719) as radiosensitizers for head and neck squamous cell carcinoma during radiotherapy[J]. PLoS One, 2021, 16(1): e0245715. |
46 | Marquard FE, Jücker M. PI3K/AKT/mTOR signa-ling as a molecular target in head and neck cancer[J]. Biochem Pharmacol, 2020, 172: 113729. |
47 | Di Leo A, Johnston S, Lee KS, et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2018, 19(1): 87-100. |
48 | De Felice F, Guerrero Urbano T. New drug development in head and neck squamous cell carcinoma: the PI3-K inhibitors[J]. Oral Oncol, 2017, 67: 119-123. |
49 | Fiedler M, Schulz D, Piendl G, et al. Buparlisib modulates PD-L1 expression in head and neck squamous cell carcinoma cell lines[J]. Exp Cell Res, 2020, 396(1): 112259. |
50 | Lenze N, Chera B, Sheth S. An evaluation of bupar-lisib for the treatment of head and neck squamous cell carcinoma[J]. Expert Opin Pharmacother, 2021, 22(2): 135-144. |
51 | 王玉洁, 范迪, 施俊. Buparlisib通过PI3K/AKT通路调控人口腔鳞状细胞癌细胞增殖和凋亡的研究[J]. 临床口腔医学杂志, 2021, 37(1): 15-18. |
Wang YJ, Fan D, Shi J. Effects of Buparlisib on human oral squamous cell carcinoma cell proliferation and apoptosis via PI3K/AKT signaling in vitro [J]. J Clin Stomatol, 2021, 37(1): 15-18. | |
52 | Chen X, Gao W, Yin G, et al. Phospho-EGFRTyr992 is synergistically repressed by co-inhibition of histone deacetylase (HDAC) and phosphatidy-linositol 3-kinase (PI3K), which attenuates resistance to erlotinib in head and neck cancer cells[J]. Ann Transl Med, 2021, 9(18): 1455. |
53 | Klinghammer K, Politz O, Eder T, et al. Combination of copanlisib with cetuximab improves tumor response in cetuximab-resistant patient-derived xenografts of head and neck cancer[J]. Oncotarget, 2020, 11(41): 3688-3697. |
54 | Marret G, Isambert N, Rezai K, et al. Phase I trial of copanlisib, a selective PI3K inhibitor, in combination with cetuximab in patients with recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Invest New Drugs, 2021, 39(6): 1641-1648. |
55 | Yang Z, Liao J, Schumaker L, et al. Simultaneously targeting ErbB family kinases and PI3K in HPV-positive head and neck squamous cell carcinoma[J]. Oral Oncol, 2022, 131: 105939. |
56 | Iwase M, Yoshiba S, Uchid M, et al. Enhanced susceptibility to apoptosis of oral squamous cell carcinoma cells subjected to combined treatment with anticancer drugs and phosphatidylinositol 3-kinase inhibitors[J]. Int J Oncol, 2007, 31(5): 1141-1147. |
57 | Tomita R, Sasabe E, Tomomura A, et al. Macro-phage‑derived exosomes attenuate the susceptibility of oral squamous cell carcinoma cells to chemotherapeutic drugs through the AKT/GSK‑3β pathway[J]. Oncol Rep, 2020, 44(5): 1905-1916. |
58 | Zhang X, Ding H, Lu Z, et al. Increased LGALS3BP promotes proliferation and migration of oral squamous cell carcinoma via PI3K/AKT pathway[J]. Cell Signal, 2019, 63: 109359. |
59 | Tang KL, Tang HY, Du Y, et al. PAR-2 promotes cell proliferation, migration, and invasion through activating PI3K/AKT signaling pathway in oral squamous cell carcinoma[J]. Biosci Rep, 2019, 39(7): BSR20182476. |
60 | Wang J, Jiang CH, Li N, et al. The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway[J]. Cell Death Dis, 2020, 11(8): 682. |
61 | Ma BB, Lui VW, Hui CW, et al. Preclinical evaluation of the AKT inhibitor MK-2206 in nasopharyngeal carcinoma cell lines[J]. Invest New Drugs, 2013, 31(3): 567-575. |
62 | Zaryouh H, De Pauw I, Baysal H, et al. The role of Akt in acquired cetuximab resistant head and neck squamous cell carcinoma: an in vitro study on a no-vel combination strategy[J]. Front Oncol, 2021, 11: 697967. |
63 | Yin P, Chen J, Wu Y, et al. Chemoprevention of 4NQO-induced mouse tongue carcinogenesis by AKT inhibitor through the MMP-9/RhoC signaling pathway and autophagy[J]. Anal Cell Pathol (Amst), 2022, 2022: 3770715. |
64 | Li M, Gao F, Yu X, et al. Promotion of ubiquitination-dependent survivin destruction contributes to xanthohumol-mediated tumor suppression and overcomes radioresistance in human oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 88. |
65 | Lang L, Lam T, Chen A, et al. Circumventing AKT-associated radioresistance in oral cancer by novel na-noparticle-encapsulated capivasertib[J]. Cells, 2020, 9(3): 533. |
|