Int J Stomatol ›› 2025, Vol. 52 ›› Issue (1): 25-33.doi: 10.7518/gjkq.2025018
• Oral Oncology • Previous Articles Next Articles
Tianyu Fu1(),Xue Zhang2,Siqi Wang1,Chengyi Guo1,Xiaoyu Dong1,Yapeng Cheng1,Rui Li3(
)
CLC Number:
1 | 钟来平, 孙坚, 郭伟, 等. 256例局部晚期口腔癌的生存分析[J]. 中国肿瘤临床, 2015, 42(4): 217-221. |
Zhong LP, Sun J, Guo W, et al. Survival analysis of 256 patients with oral cancer[J]. Chin J Clin Oncol, 2015, 42(4): 217-221. | |
2 | 韩小琴, 周俊年, 李小军, 等. 以手术切除为主的序贯综合治疗方案对局部晚期口腔癌的临床疗效[J]. 中国实用乡村医生杂志, 2023, 30(12): 64-67. |
Han XQ, Zhou JN, Li XJ, et al. The clinical efficacy of a sequential comprehensive treatment plan mainly based on surgical resection for locally advanced oral cancer[J]. Chin Pract J Rural Dr, 2023, 30(12): 64-67. | |
3 | Alvi A, Johnson JT. Extracapsular spread in the clini-cally negative neck (N0): implications and outcome[J]. Otolaryngol Head Neck Surg, 1996, 114(1): 65-70. |
4 | Pfister DG, Spencer S, Brizel DM, et al. Head and neck cancers, version 1. 2015[J]. J Natl Compr Canc Netw, 2015, 13(7): 847-856. |
5 | Bewley AF, Farwell DG. Oral leukoplakia and oral cavity squamous cell carcinoma[J]. Clin Dermatol, 2017, 35(5): 461-467. |
6 | Li HT, He XD, Kang ZH, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed Engl, 2010, 49(26): 4430-4434. |
7 | Zhou JG, Booker C, Li RY, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. J Am Chem Soc, 2007, 129(4): 744-745. |
8 | Yang ZC, Wang M, Yong AM, et al. Intrinsically fluo-rescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the pre-sence of monopotassium phosphate[J]. Chem Commun, 2011, 47(42): 11615-11617. |
9 | Xu XY, Ray R, Gu YL, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40): 12736-12737. |
10 | Gong XJ, Lu WJ, Liu Y, et al. Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging[J]. J Mater Chem B, 2015, 3(33): 6813-6819. |
11 | Mewada A, Pandey S, Thakur M, et al. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging[J]. J Mater Chem B, 2014, 2(6): 698-705. |
12 | Yang L, Wang ZR, Wang J, et al. Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy[J]. Nanoscale, 2016, 8(12): 6801-6809. |
13 | Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709): 538-544. |
14 | Chu SY, Wang HQ, Du YX, et al. Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: visual monitoring of glutathione in human serum for health prognosis[J]. ACS Sustainable Chem Eng, 2020, 8(22): 8175-8183. |
15 | Li Z, Liu WD, Ni PJ, et al. Carbon dots confined in N-doped carbon as peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids[J]. Chem Eng J, 2022, 428: 131396. |
16 | Peng XX, Yang HP, Li CC, et al. Green and orange fluorescent carbon dots for detecting oral cancer by staining tissue sections[J]. J Nanosci Nanotechnol, 2019, 19(12): 7509-7516. |
17 | Behi M, Naficy S, Chandrawati R, et al. Nanoassembled peptide biosensors for rapid detection of matrilysin cancer biomarker[J]. Small, 2020, 16(16): e1905994. |
18 | Sri S, Kumar R, Panda AK, et al. Highly biocompa-tible, fluorescence, and zwitterionic carbon dots as a novel approach for bioimaging applications in cancerous cells[J]. ACS Appl Mater Interfaces, 2018, 10(44): 37835-37845. |
19 | Gao J, Zhu XH, Long Y, et al. Boronic acid-decora-ted carbon dot-based semiselective multichannel sensor array for cytokine discrimination and oral cancer diagnosis[J]. Anal Chem, 2024, 96(4): 1795-1802. |
20 | Sun JH, Zhang W, Zhang DY, et al. Multifunctional mesoporous silica nanoparticles as efficient transporters of doxorubicin and chlorin e6 for chemo-photodynamic combinatorial cancer therapy[J]. J Biomater Appl, 2018, 32(9): 1253-1264. |
21 | 杨磊. 基于功能化碳点抗肿瘤药物载体的构建和性质研究[D]. 沈阳: 沈阳药科大学, 2016. |
Yang L. Study on novel anti-tumor drug delivery system based on functionalized carbon dots[D]. Shen-yang: Shenyang Pharmaceutical University, 2016. | |
22 | 刘玉兰, 孟琳, 唐琪, 等. 抗坏血酸碳点通过促进自噬杀伤舌鳞癌细胞[J]. 口腔医学研究, 2018, 34(1): 35-38. |
Liu YL, Meng L, Tang Q, et al. Ascorbic acid carbon dots kill tongue squamous cell carcinoma cell by promoting autophagy[J]. J Oral Sci Res, 2018, 34(1): 35-38. | |
23 | 杜方凯, 徐江生, 曾钫, 等. 基于碳点多功能纳米载药体系的制备及pH响应释药性能研究[J]. 化学学报, 2016, 74(3): 241-250. |
Du FK, Xu JS, Zeng F, et al. Preparation of a multifunctional nano-carrier system based on carbon dots with pH-triggered drug release[J]. Acta Chim Sin, 2016, 74(3): 241-250. | |
24 | Samantara AK, Maji S, Ghosh A, et al. Good’s buffer derived highly emissive carbon quantum dots: excellent biocompatible anticancer drug carrier[J]. J Mater Chem B, 2016, 4(14): 2412-2420. |
25 | 袁一方. 碳量子点负载阿霉素靶向攻击细胞核治疗癌症的研究[D]. 北京: 中国人民解放军医学院,2018. |
Yuan YF. Doxorubicin-loaded carbon dots as a no-vel drug delivery system for nucleus targeted cancer therapy[D]. Beijing: Chinese People’s Liberation Army (PLA) Medical School, 2018. | |
26 | 张万林, 李一村, 杨宏宇. 基于RNA-Seq技术初步探索顺铂在口腔鳞状细胞癌的相关耐药机制[J]. 遵义医科大学学报, 2024, 47(1): 53-61. |
Zhang WL, Li YC, Yang HY. Investigating cisplatin drug resistance mechanism in oral squamous cells carcinoma through RNA-Seq technology: a preliminary study[J]. J Zunyi Med Univ, 2024, 47(1):53-61. | |
27 | Wei Z, Yin XT, Cai Y, et al. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma[J]. Int J Nanomedicine, 2018, 13: 1505-1524. |
28 | 唐琪. 抗坏血酸碳点诱导的自噬对口腔黏膜鳞癌KB细胞凋亡的作用研究[D]. 长春: 吉林大学, 2017. |
Tang Q. Effect of autophagy induced by ascorbic acid carbon dots on apoptosis in oral squamous cell carcinoma cell line KB cells[D].Changchun: Jinlin University, 2017 | |
29 | 陈李鑫. 聚多巴胺和MnO2修饰紫杉醇碳量子点协同治疗口腔鳞状细胞癌的体外研究[D].兰州: 兰州大学, 2023. |
Chen LX. Synergistic treatment of squamous cell carcinoma with polydopamine and MnO2-modified paclitaxel carbon dots[D]. Lanzhou: Lanzhou University, 2023. | |
30 | Zhang Y, Wang CX, Huang SW. Aggregation- induced emission (AIE) polymeric micelles for ima-ging-guided photodynamic cancer therapy[J]. Nanomaterials (Basel), 2018, 8(11): 921. |
31 | Liu ZY, Xie ZJ, Li WT, et al. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges[J]. J Nanobiotechnology, 2021, 19(1): 160. |
32 | Bacellar IOL, Tsubone TM, Pavani C, et al. Photodynamic efficiency: from molecular photochemistry to cell death[J]. Int J Mol Sci, 2015, 16(9): 20523-20559. |
33 | Tzerkovsky DA. Multiple-field interstitial photodynamic therapy of subcutaneously transplanted cholan-giocellular carcinoma RS-1 in rats[J]. Exp Oncol, 2017, 39(2): 117-120. |
34 | Zhu X, Wang H, Zheng LB, et al. Upconversion nanoparticle-mediated photodynamic therapy indu-ces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway[J]. Int J Nanomedicine, 2015, 10: 3719-3736. |
35 | Huang YY, Sharma SK, Dai TH, et al. Can nanotechnology potentiate photodynamic therapy[J]. Nano-technol Rev, 2012, 1(2): 111-146. |
36 | Kong TT, Liu TJ, Zhang YJ, et al. Carbon dots with intrinsic theranostic properties for photodynamic therapy of oral squamous cell carcinoma[J]. J Biomater Appl, 2022, 37(5): 850-858. |
37 | Li QR, Zhou RH, Xie Y, et al. Sulphur-doped carbon dots as a highly efficient nano-photodynamic agent against oral squamous cell carcinoma[J]. Cell Prolif, 2020, 53(4): e12786. |
38 | Nasrin A, Hassan M, Gomes VG. Two-photon active nucleus-targeting carbon dots: enhanced ROS generation and photodynamic therapy for oral cancer[J]. Nanoscale, 2020, 12(40): 20598-20603. |
39 | Ban QF, Bai T, Duan X, et al. Noninvasive photothermal cancer therapy nanoplatforms via integra-ting nanomaterials and functional polymers[J]. Biomater Sci, 2017, 5(2): 190-210. |
40 | Ha Lien NT, Phan AD, van Khanh BT, et al. Applications of mesoporous silica-encapsulated gold nanorods loaded doxorubicin in chemo-photothermal the-rapy[J]. ACS Omega, 2020, 5(32): 20231-20237. |
41 | Liu R, Zhang HC, Zhang FR, et al. Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy[J]. Mater Sci Eng C Mater Biol Appl, 2019, 96: 138-145. |
42 | Chen S, Zhu LJ, Du Z, et al. Polymer encapsulated clinical ICG nanoparticles for enhanced photothermal therapy and NIR fluorescence imaging in cervical cancer[J]. RSC Adv, 2021, 11(34): 20850-20858. |
43 | Das RK, Panda S, Bhol CS, et al. N-doped carbon quantum dot (NCQD)-deposited carbon capsules for synergistic fluorescence imaging and photothermal therapy of oral cancer[J]. Langmuir, 2019, 35(47): 15320-15329. |
44 | 秦丽颖. 高稳定碳点纳米复合材料应用于舌鳞癌标记和治疗的研究[D]. 兰州: 兰州大学, 2023. |
Qin LY. Application of highly stable carbon dot nanocomposites for the labeling and treatment of tongue squamous cell carcinoma[D]. Lanzhou: Lanzhou University, 2023. | |
45 | Yu I, Dakwar A, Takabe K. Immunotherapy: recent advances and its future as a neoadjuvant, adjuvant, and primary treatment in colorectal cancer[J]. Cells, 2023, 12(2): 258. |
46 | Wang Z, Han J, Guo Z, et al. Ginseng-based carbon dots inhibit the growth of squamous cancer cells by increasing ferroptosis[J]. Front Oncol, 2023, 13: 1097692. |
47 | Zhang XL, Li HY, Yi C, et al. Host immune response triggered by graphene quantum-dot-media-ted photodynamic therapy for oral squamous cell carcinoma[J]. Int J Nanomedicine, 2020, 15: 9627-9638. |
48 | Fan WP, Yung B, Huang P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chem Rev, 2017, 117(22): 13566-13638. |
49 | Li XS, Lovell JF, Yoon J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nat Rev Clin Oncol, 2020, 17(11): 657-674. |
50 | 李永晖. 基于卟啉及七甲川花菁染料的纳米粒子用于肿瘤的PDT和PTT联合治疗[D]. 天津: 天津大学, 2021. |
Li YH. Nanoparticles based on porphyrin and heptamethine cyanine dye are used in PDT and PTT combined therapy of tumors[D]. Tianjin: Tianjin University, 2021. | |
51 | 陈巧. 基于碳点复合纳米体系的构建及其在肿瘤诊疗体系的工作研究[D]. 重庆: 重庆邮电大学, 2020. |
Chen Q. Construction of carbon point composite nanosystem and its application in cancer diagnosis and treatment system[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2020. |
|