Int J Stomatol ›› 2023, Vol. 50 ›› Issue (2): 138-145.doi: 10.7518/gjkq.2023019

• Artificial Intelligence • Previous Articles     Next Articles

Research progress on artificial intelligence techniques in diagnosis of oral cancer and potentially malignant disorders

Lin Huiping(),Xu Ting,Lin Jun.()   

  1. Dept. of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2022-06-12 Revised:2022-10-14 Online:2023-03-01 Published:2023-03-14
  • Contact: Jun. Lin;
  • Supported by:
    National Natural Science Foundation of China(81970978);Natural Science Foundation of Zhejiang Province(LQ20H140007)


Oral cancer is a quite common global health issue, with morbidity and mortality progressively increased in recent years. Enhancing early diagnosis of oral cancer, especially in the phase of oral potentially malignant disorders (OPMD), would significantly reduce the incidence and mortality of oral cancer. However, earlier diagnosis of oral cancer and OPMD is still very challenging, and lacks of effective and efficient (traditional) medical methods. Artificial intelligence (AI) provides new insights and approaches for diagnosis of oral disease. Here we review the applications of AI to detect oral cancer and OPMD on a variety of photographic images, including histopathological images, confocal laser endomicroscopy, hyperspectral imaging, and white light images. And then, the obstacles for AI in diagnosis are also given.

Key words: oral cancer, oral potentially malignant disorders, artificial intelligence

CLC Number: 

  • R 782

1 周维, 何明艳, 沈婉莹, 等. 2005—2015年中国口腔癌发病及死亡趋势分析[J]. 华中科技大学学报(医学版), 2020, 49(6): 706-711.
Zhou W, He MY, Shen WY, et al. Analysis of the incidence and mortality trend of oral and pharyngeal cancer in China from 2005 to 2015[J]. Acta Med Univ Sci Technol Huazhong, 2020, 49(6): 706-711.
2 Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
3 Ghantous Y, Abu Elnaaj I. Global incidence and risk factors of oral cancer[J]. Harefuah, 2017, 156(10): 645-649.
4 Chaturvedi P. Effective strategies for oral cancer control in India[J]. J Cancer Res Ther, 2012, 8(): S55-S56.
5 Hashim D, Genden E, Posner M, et al. Head and neck cancer prevention: from primary prevention to impact of clinicians on reducing burden[J]. Ann Oncol, 2019, 30(5): 744-756.
6 Hassona Y, Scully C, Almangush A, et al. Oral potentially malignant disorders among dental patients: a pilot study in Jordan[J]. Asian Pac J Cancer Prev, 2014, 15(23): 10427-10431.
7 Singh MP, Misra S, Rathanaswamy SP, et al. Clinical profile and epidemiological factors of oral cancer patients from North India[J]. Natl J Maxillofac Surg, 2015, 6(1): 21-24.
8 Monteiro LS, Antunes L, Santos LL, et al. Survival probabilities and trends for lip, oral cavity and oropharynx cancers in Northern Portugal in the period 2000—2009[J]. Ecancermedicalscience, 2018, 12: 855.
9 Sungwalee W, Vatanasapt P, Suwanrungruang K, et al. Comparing survival of oral cancer patients before and after launching of the universal coverage scheme in Thailand[J]. Asian Pac J Cancer Prev, 2016, 17(7): 3541-3544.
10 Rusthoven KE, Raben D, Song JI, et al. Survival and patterns of relapse in patients with oral tongue cancer[J]. J Oral Maxillofac Surg, 2010, 68(3): 584-589.
11 Thomson PJ, Goodson ML, Smith DR. Profiling cancer risk in oral potentially malignant disorders-a patient cohort study[J]. J Oral Pathol Med, 2017, 46(10): 888-895.
12 Chakraborty D, Natarajan C, Mukherjee A. Advan-ces in oral cancer detection[J]. Adv Clin Chem, 2019, 91: 181-200.
13 Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology[J]. Ann Oncol, 2017, 28(6): 1191-1206.
14 Tschandl P, Codella N, Akay BN, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study[J]. Lancet Oncol, 2019, 20(7): 938-947.
15 Mobadersany P, Yousefi S, Amgad M, et al. Predic-ting cancer outcomes from histology and genomics using convolutional networks[J]. Proc Natl Acad Sci U S A, 2018, 115(13): E2970-E2979.
16 Rethman MP, Carpenter W, Cohen EE, et al. Evidence-based clinical recommendations regarding screening for oral squamous cell carcinomas[J]. J Am Dent Assoc, 2010, 141(5): 509-520.
17 Gupta RK, Kaur M, Manhas J. Tissue level based deep learning framework for early detection of dysplasia in oral squamous epithelium[J]. J Multimed Inf Syst, 2019, 6(2): 81-86.
18 Folmsbee J, Liu XL, Brandwein-Weber M, et al. Active deep learning: improved training efficiency of convolutional neural networks for tissue classification in oral cavity cancer[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, DC, USA: IEEE, 2018: 770-773.
19 Mehrotra R. The role of cytology in oral lesions: a review of recent improvements[J]. Diagn Cytopathol, 2012, 40(1): 73-83.
20 Brickley MR, Cowpe JG, Shepherd JP. Performance of a computer simulated neural network trained to categorise normal, premalignant and malignant oral smears[J]. J Oral Pathol Med, 1996, 25(8): 424-428.
21 Chatterjee S, Nawn D, Mandal M, et al. Augmentation of statistical features in cytopathology towards computer aided diagnosis of oral precanceral cancer[C]//Fourth International Conference on Biosignals, Images and Instrumentation (ICBSII). Chennai, India: IEEE, 2018: 206-212.
22 Dey S, Sarkar R, Chatterjee K, et al. Pre-cancer risk assessment in habitual smokers from DIC images of oral exfoliative cells using active contour and SVM analysis[J]. Tissue Cell, 2017, 49(2 Pt B): 296-306.
23 Shaban M, Khurram SA, Fraz MM, et al. A novel digital score for abundance of tumour infiltrating lymphocytes predicts disease free survival in oral squamous cell carcinoma[J]. Sci Rep, 2019, 9(1): 13341.
24 Gómez I, Warnakulasuriya S, Varela-Centelles PI, et al. Is early diagnosis of oral cancer a feasible objective? Who is to blame for diagnostic delay[J]. Oral Dis, 2010, 16(4): 333-342.
25 Prabhakar SK, Rajaguru H. Performance analysis of linear layer neural networks for oral cancer classification[C]//ICT International Student Project Confe-rence (ICT-ISPC). Johor, Malaysia: IEEE, 2017: 1-4.
26 Das N, Hussain E, Mahanta LB. Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network[J]. Neural Netw, 2020, 128: 47-60.
27 Das DK, Bose S, Maiti AK, et al. Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis[J]. Tissue Cell, 2018, 53: 111-119.
28 Oetter N, Knipfer C, Rohde M, et al. Development and validation of a classification and scoring system for the diagnosis of oral squamous cell carcinomas through confocal laser endomicroscopy[J]. J Transl Med, 2016, 14(1): 159.
29 Sethi S, Ju XQ, Logan RM, et al. Diagnostic accuracy of confocal laser endomicroscopy for the diagnosis of oral squamous cell carcinoma: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2021, 18(23): 12390.
30 Moore C, Mehta V, Ma XH, et al. Interobserver agreement of confocal laser endomicroscopy for detection of head and neck neoplasia[J]. Laryngoscope, 2016, 126(3): 632-637.
31 Aubreville M, Goncalves M, Knipfer C, et al. Patch-based carcinoma detection on confocal laser endomicroscopy images: a cross-site robustness assessment[EB/OL]. 2017:arXiv:1707.08149[cs.CV]. .
32 Aubreville M, Knipfer C, Oetter N, et al. Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep lear-ning[J]. Sci Rep, 2017, 7(1): 11979.
33 Dittberner A, Rodner E, Ortmann W, et al. Automa-ted analysis of confocal laser endomicroscopy ima-ges to detect head and neck cancer[J]. Head Neck, 2016, 38(): E1419-E1426.
34 Stoeve M, Aubreville M, Oetter N, et al. Motion artifact detection in confocal laser endomicroscopy images//Bildverarbeitung für die Medizin 2018[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018: 328-333.
35 Aubreville M, Stoeve M, Oetter N, et al. Deep lear-ning-based detection of motion artifacts in probe-based confocal laser endomicroscopy images[J]. Int J Comput Assist Radiol Surg, 2019, 14(1): 31-42.
36 Halicek M, Little JV, Wang X, et al. Optical biopsy of head and neck cancer using hyperspectral ima-ging and convolutional neural networks[J]. J Biomed Opt, 2019, 24(3): 1-9.
37 Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm[J]. J Cancer Res Clin Oncol, 2019, 145(4): 829-837.
38 Halicek M, Little JV, Wang X, et al. Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks[J]. Proc SPIE Int Soc Opt Eng, 2018, 10576: 1057-605.
39 Lu GL, Wang DS, Qin XL, et al. Detection and delineation of squamous neoplasia with hyperspectral imaging in a mouse model of tongue carcinogenesis[J]. J Biophotonics, 2018, 11(3):10.1002/jbio.2017-00078.
40 Fei BW, Lu GL, Wang X, et al. Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients[J]. J Biomed Opt, 2017, 22(8): 1-7.
41 Awan KH, Morgan PR, Warnakulasuriya S. Evaluation of an autofluorescence based imaging system (VELscopeTM) in the detection of oral potentially malignant disorders and benign keratoses[J]. Oral Oncol, 2011, 47(4): 274-277.
42 Huang TT, Huang JS, Wang YY, et al. Novel quantitative analysis of autofluorescence images for oral cancer screening[J]. Oral Oncol, 2017, 68: 20-26.
43 Huang TT, Chen KC, Wong TY, et al. Two-channel autofluorescence analysis for oral cancer[J]. J Bio-med Opt, 2018, 24(5): 1-10.
44 Jeng MJ, Sharma M, Chao TY, et al. Multiclass classification of autofluorescence images of oral cavity lesions based on quantitative analysis[J]. PLoS One, 2020, 15(2): e0228132.
45 Uthoff RD, Song BF, Birur P, et al. Development of a dual-modality, dual-view smartphone-based ima-ging system for oral cancer detection[C]//Proc SPIE 10486, San Francisco, California, USA, SPIE BiOS, 2018, 10486: 106-112.
46 Song BF, Sunny S, Uthoff RD, et al. Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep lear-ning[J]. Biomed Opt Express, 2018, 9(11): 5318-5329.
47 Song BF, Li SB, Sunny S, et al. Classification of imbalanced oral cancer image data from high-risk po-pulation[J]. J Biomed Opt, 2021, 26(10): 105001.
48 Fu QY, Chen Y, Li ZH, et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: a retrospective study[J]. EClinicalMedicine, 2020, 27: 100558.
49 Warin K, Limprasert W, Suebnukarn S, et al. Automatic classification and detection of oral cancer in photographic images using deep learning algorithms[J]. J Oral Pathol Med, 2021, 50(9): 911-918.
50 Jubair F, Al-Karadsheh O, Malamos D, et al. A no-vel lightweight deep convolutional neural network for early detection of oral cancer[J]. Oral Dis, 2022, 28(4): 1123-1130.
51 Song B, Li S, Sunny S, et al. An ensemble deep neural network approach for oral cancer screening[J]. Int J Onl Eng, 2021, 17(2): 121.
52 Welikala RA, Remagnino P, Lim JH, et al. Automa-ted detection and classification of oral lesions using deep learning for early detection of oral cancer[J]. IEEE Access, 8: 132677-132693.
53 Lim JH, Tan CS, Chan CS, et al. D’OraCa: deep learning-based classification of oral lesions with mouth landmark guidance for early detection of oral cancer[M]//Medical image understanding and analysis. Cham: Springer International Publishing, 2021: 408-422.
54 Guo C, Pleiss G, Sun Y, et al. On calibration of mo-dern neural networks[EB/OL]. 2017: arXiv: 1706. 04599[cs.LG]. .
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Jiang Yueying,He Yutian,Li Ting,Zhou Ronghui.. Research progress on the application of near infrared fluorescence probe in the diagnosis of oral cancer [J]. Int J Stomatol, 2023, 50(4): 407-413.
[3] Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478.
[4] Zhu Keshi,Liao Anqi,Yu Youcheng.. Research progress on the application of machine learning in dental implantology [J]. Int J Stomatol, 2023, 50(4): 491-498.
[5] Tang Yueting,Dai Jiaqi,Dong Wenxuan,Wang Hu,Guo Jixiang,You Meng. Research progress of dental age evaluation based on machine learning methods [J]. Int J Stomatol, 2023, 50(2): 146-151.
[6] Wang Taiping,Shi Xinglian,Li Zhezhen,Liu Mei,Jiang Jianhong. Analysis of psychological factors and intervention in patients with oral cancer [J]. Int J Stomatol, 2023, 50(2): 203-209.
[7] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
[8] Luo En. Exploration and clinical application of artificial intelligence in orthognathic surgery [J]. Int J Stomatol, 2022, 49(2): 125-131.
[9] Tian Erkang,Xiang Qianrong,Zhao Xinran,Peng Jiahan,Shu Rui. Application of artificial intelligence in oral diagnosis and treatment [J]. Int J Stomatol, 2021, 48(4): 475-484.
[10] He Yuqing,Dan Hongxia,Chen Qianming. Application of photodynamic therapy for oral carcinogenesis prevention [J]. Int J Stomatol, 2020, 47(6): 669-676.
[11] Kong Lixin,Ren Biao,Cheng Lei. Research progress on regulation of cyclooxygenase-2/prostaglandin E2 pathway on oral cancer [J]. Int J Stomatol, 2020, 47(4): 431-438.
[12] Huang Lu,Dai Jie,Wu Yanmin. Application of saliva biomarkers in oral cancer screening [J]. Int J Stomatol, 2020, 47(1): 68-75.
[13] Yuan Zhenying,Guan Cuiqiang,Nan Xinrong. Research progress on DNA methylation and oral disease [J]. Int J Stomatol, 2019, 46(4): 437-441.
[14] Qian Li,Ping Zhang,Jiao Chen,Xin Zeng,Yun Feng. Progress of salivaomics in diagnosis of oral cancer [J]. Inter J Stomatol, 2018, 45(6): 710-715.
[15] Tongtong Han,Qiaoer Chen,Youming. Zhu. Long non-coding RNA associated with p53 and the relationship with tumor [J]. Inter J Stomatol, 2018, 45(5): 597-602.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .