Int J Stomatol ›› 2023, Vol. 50 ›› Issue (2): 146-151.doi: 10.7518/gjkq.2023033

• Artificial Intelligence • Previous Articles     Next Articles

Research progress of dental age evaluation based on machine learning methods

Tang Yueting1(),Dai Jiaqi2,Dong Wenxuan3,Wang Hu1,Guo Jixiang3,You Meng1()   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Medical Imaging, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.Dept. of Oral Radiology, Sichuan Hospital of Stomatology, Chengdu 610015, China
    3.College of Computer Science, Sichuan University, Chengdu 610065, China
  • Received:2022-07-29 Revised:2022-11-10 Online:2023-03-01 Published:2023-03-14
  • Contact: Meng You E-mail:497315852@qq.com;youmeng@scu.edu.cn
  • Supported by:
    Exploration and Research and Development Project of West China Hospital of Stomatology, Sichuan University(LCYJ2019-9)

Abstract:

Dental age is an important indicator of biological age and has essential application value in orthodontics, forensic dentistry, and criminal investigation. Traditional methods of dental age evaluation include atlas, scoring, and pulp cavity evaluation. These manual evaluation methods are relative cumbersome that their applications have been hampered. With the development of artificial intelligence technology and machine learning algorithms, intelligent evaluation of dental age have been gained more attention in recent years. This paper aims to provide a reference for the future research and application of dental age evaluation, summarize traditional and machine learning methods, and demonstrate the benefits and limitations of the existing approaches that are used in this topic.

Key words: dental age, dental age assessment, machine learning, artificial intelligence

CLC Number: 

  • R 780

TrendMD: 
1 Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age[J]. J Gerontol A Biol Sci Med Sci, 2013, 68(6): 667-674.
2 Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults[J]. Proc Natl Acad Sci U S A, 2015, 112(30): E4104-E4110.
3 Rockwood K, Howlett SE. Fifteen years of progress in understanding frailty and health in aging[J]. BMC Med, 2018, 16: 220.
4 Klemera P, Doubal S. A new approach to the concept and computation of biological age[J]. Mech Ageing Dev, 2006, 127(3): 240-248.
5 Ingram DK. Toward the behavioral assessment of biological aging in the laboratory mouse: concepts, terminology, and objectives[J]. Exp Aging Res, 1983, 9(4): 225-238.
6 Frucht S, Schnegelsberg C, Schulte-Mönting J, et al. Dental age in southwest Germany. A radiographic study[J]. J Orofac Orthop, 2000, 61(5): 318-329.
7 谭英, 王璟, 巴凯, 等. 成都地区青少年第三磨牙牙龄与年龄的相关性研究[J]. 华西口腔医学杂志, 2013, 31(3): 272-274, 278.
Tan Y, Wang J, Ba K, et al. Relationship between dental calcification stages of the third molar and a-ges among teenagers in Chengdu[J]. West China J Stomatol, 2013, 31(3): 272-274, 278.
8 Lopez TT, Arruda CP, Rocha M, et al. Estimating ages by third molars: stages of development in Brazilian young adults[J]. J Forensic Leg Med, 2013, 20(5): 412-418.
9 Melo M, Ata-Ali J. Accuracy of the estimation of dental age in comparison with chronological age in a Spanish sample of 2 641 living subjects using the Demirjian and Nolla methods[J]. Forensic Sci Int, 2017, 270: 276.e1-276.e7.
10 Schour I, Massler M. Studies in tooth development: the growth pattern of human teeth[J]. J Am Dent Assoc, 1940, 27(11): 1778-1793.
11 Schour I, Massler M. Studies in tooth development: the growth pattern of human teeth part Ⅱ[J]. J Am Dent Assoc, 1940, 27(12): 1918-1931.
12 Moorrees CF, Fanning EA, Hunt EE Jr. Age variation of formation stages for ten permanent teeth[J]. J Dent Res, 1963, 42: 1490-1502.
13 Anderson DL, Thompson GW, Popovich F. Age of attainment of mineralization stages of the permanent dentition[J]. J Forensic Sci, 1976, 21(1): 191-200.
14 Demirjian A, Goldstein H, Tanner JM. A new system of dental age assessment[J]. Hum Biol, 1973, 45(2): 211-227.
15 Willems G. A review of the most commonly used dental age estimation techniques[J]. J Forensic O-dontostomatol, 2001, 19(1): 9-17.
16 Roberts GJ, Parekh S, Petrie A, et al. Dental age assessment (DAA): a simple method for children and emerging adults[J]. Br Dent J, 2008, 204(4): E7.
17 Jayaraman J, Wong HM, King NM, et al. Development of a reference data set (RDS) for dental age estimation (DAE) and testing of this with a separate validation set (VS) in a southern Chinese population[J]. J Forensic Leg Med, 2016, 43: 26-33.
18 Wong HM, Wen YF, Jayaraman J, et al. Northern Chinese dental ages estimated from southern Chinese reference datasets closely correlate with chronological age[J]. Heliyon, 2016, 2(12): e00216.
19 Moze K, Roberts G. Dental age assessment (DAA) of Afro-Trinidadian children and adolescents. Deve-lopment of a reference dataset (RDS) and comparison with Caucasians resident in London, UK[J]. J Forensic Leg Med, 2012, 19(5): 272-279.
20 Cameriere R, Flores-Mir C, Mauricio F, et al. Effects of nutrition on timing of mineralization in teeth in a Peruvian sample by the Cameriere and Demirjian methods[J]. Ann Hum Biol, 2007, 34(5): 547-556.
21 Melo M, Ata-Ali F, Ata-Ali J, et al. Demirjian and Cameriere methods for age estimation in a Spanish sample of 1 386 living subjects[J]. Sci Rep, 2022, 12: 2838.
22 Gleiser I, Hunt EE Jr. The permanent mandibular first molar: its calcification, eruption and decay[J]. Am J Phys Anthropol, 1955, 13(2): 253-283.
23 Hunt EE Jr, Gleiser I. The estimation of age and sex of preadolescent children from bones and teeth[J]. Am J Phys Anthropol, 1955, 13(3): 479-487.
24 Mesotten K, Gunst K, Carbonez A, et al. Dental age estimation and third molars: a preliminary study[J]. Forensic Sci Int, 2002, 129(2): 110-115.
25 Olze A, Bilang D, Schmidt S, et al. Validation of common classification systems for assessing the mineralization of third molars[J]. Int J Legal Med, 2005, 119(1): 22-26.
26 Thevissen PW, Fieuws S, Willems G. Third molar development: measurements versus scores as age predictor[J]. Arch Oral Biol, 2011, 56(10): 1035-1040.
27 Thevissen PW, Kaur J, Willems G. Human age estimation combining third molar and skeletal development[J]. Int J Legal Med, 2012, 126(2): 285-292.
28 Kvaal SI, Kolltveit KM, Thomsen IO, et al. Age estimation of adults from dental radiographs[J]. Forensic Sci Int, 1995, 74(3): 175-185.
29 Vandevoort FM, Bergmans L, van Cleynenbreugel J, et al. Age calculation using X-ray microfocus computed tomographical scanning of teeth: a pilot study[J]. J Forensic Sci, 2004, 49(4): 787-790.
30 Yang F, Jacobs R, Willems G. Dental age estimation through volume matching of teeth imaged by cone-beam CT[J]. Forensic Sci Int, 2006, 159(): S78-S83.
31 Gore JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68: A1-A4.
32 Halabi SS, Prevedello LM, Kalpathy-Cramer J, et al. The RSNA pediatric bone age machine learning challenge[J]. Radiology, 2019, 290(2): 498-503.
33 Beheshtian E, Putman K, Santomartino SM, et al. Generalizability and bias in a deep learning pedia-tric bone age prediction model using hand radiographs[J]. Radiology, 2022: 220505.
34 Back WD, Seurig S, Wagner S, et al. Forensic age estimation with Bayesian convolutional neural networks based on panoramic dental X-ray imaging[C]//International Conference on Medical Imaging with Deep Learning (MIDL). Elsevier, 2019.
35 Mualla N, Houssein EH, Hassan MR. Dental age estimation based on X-ray images[J]. Comput Mater Continua, 2020, 62(2): 591-605.
36 Kim S, Lee YH, Noh YK, et al. Age-group determination of living individuals using first molar images based on artificial intelligence[J]. Sci Rep, 2021, 11(1): 1073.
37 Oktay AB. Tooth detection with convolutional neural networks[C]//2017 Medical Technologies National Congress (TIPTEKNO). IEEE, 2017: 1-4.
38 Miki Y, Muramatsu C, Hayashi T, et al. Classification of teeth in cone-beam CT using deep convolutional neural network[J]. Comput Biol Med, 2017, 80: 24-29.
39 Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol, 2019, 48(4): 20180051.
40 Kim C, Kim D, Jeong H, et al. Automatic tooth detection and numbering using a combination of a CNN and heuristic algorithm[J]. Appl Sci, 2020, 10(16): 5624.
41 Mohammad N, Muad AM, Ahmad R, et al. Reclassification of Demirjian’s mandibular premolars sta-ging for age estimation based on semi-automated segmentation of deep convolutional neural network[J]. Forensic Imaging, 2021, 24: 200440.
42 Čular L, Tomaić M, Subašić M, et al. Dental age estimation from panoramic X-ray images using statistical models[C]//Proceedings of the 10th internatio-nal symposium on image and signal processing and analysis. IEEE, 2017: 25-30.
43 De Tobel J, Radesh P, Vandermeulen D, et al. An automated technique to stage lower third molar deve-lopment on panoramic radiographs for age estimation: a pilot study[J]. J Forensic Odontostomatol, 2017, 35(2): 42-54.
44 Merdietio Boedi R, Banar N, De Tobel J, et al. Effect of lower third molar segmentations on automa-ted tooth development staging using a convolutional neural network[J]. J Forensic Sci, 2020, 65(2): 481-486.
45 Banar N, Bertels J, Laurent F, et al. Towards fully automated third molar development staging in pa-noramic radiographs[J]. Int J Legal Med, 2020, 134(5): 1831-1841.
46 Han MQ, Du SY, Ge YY, et al. With or without human interference for precise age estimation based on machine learning[J]. Int J Legal Med, 2022, 136(3): 821-831.
47 Štepanovský M, Ibrová A, Buk Z, et al. Novel age estimation model based on development of permanent teeth compared with classical approach and other modern data mining methods[J]. Forensic Sci Int, 2017, 279: 72-82.
48 Tao J, Wang J, Wang A, et al. Dental age estimation: a machine learning perspective[C]//International Conference on Advanced Machine Learning Technologies and Applications. Springer, 2019: 722-733.
[1] Zhu Keshi,Liao Anqi,Yu Youcheng.. Research progress on the application of machine learning in dental implantology [J]. Int J Stomatol, 2023, 50(4): 491-498.
[2] Lin Huiping,Xu Ting,Lin Jun.. Research progress on artificial intelligence techniques in diagnosis of oral cancer and potentially malignant disorders [J]. Int J Stomatol, 2023, 50(2): 138-145.
[3] Luo En. Exploration and clinical application of artificial intelligence in orthognathic surgery [J]. Int J Stomatol, 2022, 49(2): 125-131.
[4] Tian Erkang,Xiang Qianrong,Zhao Xinran,Peng Jiahan,Shu Rui. Application of artificial intelligence in oral diagnosis and treatment [J]. Int J Stomatol, 2021, 48(4): 475-484.
[5] CHEN Jian-wei, LIU Ze-ping, GUO Jing, LIU Ren-kai, CHEN Ting-ting, ZOU Shu-juan. Dental age assessment using Demirjian′s method on Chengdu children aged from eig [J]. Inter J Stomatol, 2009, 36(3): 273-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .