Int J Stomatol ›› 2023, Vol. 50 ›› Issue (2): 146-151.doi: 10.7518/gjkq.2023033
• Artificial Intelligence • Previous Articles Next Articles
Tang Yueting1(),Dai Jiaqi2,Dong Wenxuan3,Wang Hu1,Guo Jixiang3,You Meng1()
CLC Number:
1 | Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age[J]. J Gerontol A Biol Sci Med Sci, 2013, 68(6): 667-674. |
2 | Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults[J]. Proc Natl Acad Sci U S A, 2015, 112(30): E4104-E4110. |
3 | Rockwood K, Howlett SE. Fifteen years of progress in understanding frailty and health in aging[J]. BMC Med, 2018, 16: 220. |
4 | Klemera P, Doubal S. A new approach to the concept and computation of biological age[J]. Mech Ageing Dev, 2006, 127(3): 240-248. |
5 | Ingram DK. Toward the behavioral assessment of biological aging in the laboratory mouse: concepts, terminology, and objectives[J]. Exp Aging Res, 1983, 9(4): 225-238. |
6 | Frucht S, Schnegelsberg C, Schulte-Mönting J, et al. Dental age in southwest Germany. A radiographic study[J]. J Orofac Orthop, 2000, 61(5): 318-329. |
7 | 谭英, 王璟, 巴凯, 等. 成都地区青少年第三磨牙牙龄与年龄的相关性研究[J]. 华西口腔医学杂志, 2013, 31(3): 272-274, 278. |
Tan Y, Wang J, Ba K, et al. Relationship between dental calcification stages of the third molar and a-ges among teenagers in Chengdu[J]. West China J Stomatol, 2013, 31(3): 272-274, 278. | |
8 | Lopez TT, Arruda CP, Rocha M, et al. Estimating ages by third molars: stages of development in Brazilian young adults[J]. J Forensic Leg Med, 2013, 20(5): 412-418. |
9 | Melo M, Ata-Ali J. Accuracy of the estimation of dental age in comparison with chronological age in a Spanish sample of 2 641 living subjects using the Demirjian and Nolla methods[J]. Forensic Sci Int, 2017, 270: 276.e1-276.e7. |
10 | Schour I, Massler M. Studies in tooth development: the growth pattern of human teeth[J]. J Am Dent Assoc, 1940, 27(11): 1778-1793. |
11 | Schour I, Massler M. Studies in tooth development: the growth pattern of human teeth part Ⅱ[J]. J Am Dent Assoc, 1940, 27(12): 1918-1931. |
12 | Moorrees CF, Fanning EA, Hunt EE Jr. Age variation of formation stages for ten permanent teeth[J]. J Dent Res, 1963, 42: 1490-1502. |
13 | Anderson DL, Thompson GW, Popovich F. Age of attainment of mineralization stages of the permanent dentition[J]. J Forensic Sci, 1976, 21(1): 191-200. |
14 | Demirjian A, Goldstein H, Tanner JM. A new system of dental age assessment[J]. Hum Biol, 1973, 45(2): 211-227. |
15 | Willems G. A review of the most commonly used dental age estimation techniques[J]. J Forensic O-dontostomatol, 2001, 19(1): 9-17. |
16 | Roberts GJ, Parekh S, Petrie A, et al. Dental age assessment (DAA): a simple method for children and emerging adults[J]. Br Dent J, 2008, 204(4): E7. |
17 | Jayaraman J, Wong HM, King NM, et al. Development of a reference data set (RDS) for dental age estimation (DAE) and testing of this with a separate validation set (VS) in a southern Chinese population[J]. J Forensic Leg Med, 2016, 43: 26-33. |
18 | Wong HM, Wen YF, Jayaraman J, et al. Northern Chinese dental ages estimated from southern Chinese reference datasets closely correlate with chronological age[J]. Heliyon, 2016, 2(12): e00216. |
19 | Moze K, Roberts G. Dental age assessment (DAA) of Afro-Trinidadian children and adolescents. Deve-lopment of a reference dataset (RDS) and comparison with Caucasians resident in London, UK[J]. J Forensic Leg Med, 2012, 19(5): 272-279. |
20 | Cameriere R, Flores-Mir C, Mauricio F, et al. Effects of nutrition on timing of mineralization in teeth in a Peruvian sample by the Cameriere and Demirjian methods[J]. Ann Hum Biol, 2007, 34(5): 547-556. |
21 | Melo M, Ata-Ali F, Ata-Ali J, et al. Demirjian and Cameriere methods for age estimation in a Spanish sample of 1 386 living subjects[J]. Sci Rep, 2022, 12: 2838. |
22 | Gleiser I, Hunt EE Jr. The permanent mandibular first molar: its calcification, eruption and decay[J]. Am J Phys Anthropol, 1955, 13(2): 253-283. |
23 | Hunt EE Jr, Gleiser I. The estimation of age and sex of preadolescent children from bones and teeth[J]. Am J Phys Anthropol, 1955, 13(3): 479-487. |
24 | Mesotten K, Gunst K, Carbonez A, et al. Dental age estimation and third molars: a preliminary study[J]. Forensic Sci Int, 2002, 129(2): 110-115. |
25 | Olze A, Bilang D, Schmidt S, et al. Validation of common classification systems for assessing the mineralization of third molars[J]. Int J Legal Med, 2005, 119(1): 22-26. |
26 | Thevissen PW, Fieuws S, Willems G. Third molar development: measurements versus scores as age predictor[J]. Arch Oral Biol, 2011, 56(10): 1035-1040. |
27 | Thevissen PW, Kaur J, Willems G. Human age estimation combining third molar and skeletal development[J]. Int J Legal Med, 2012, 126(2): 285-292. |
28 | Kvaal SI, Kolltveit KM, Thomsen IO, et al. Age estimation of adults from dental radiographs[J]. Forensic Sci Int, 1995, 74(3): 175-185. |
29 | Vandevoort FM, Bergmans L, van Cleynenbreugel J, et al. Age calculation using X-ray microfocus computed tomographical scanning of teeth: a pilot study[J]. J Forensic Sci, 2004, 49(4): 787-790. |
30 | Yang F, Jacobs R, Willems G. Dental age estimation through volume matching of teeth imaged by cone-beam CT[J]. Forensic Sci Int, 2006, 159(): S78-S83. |
31 | Gore JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68: A1-A4. |
32 | Halabi SS, Prevedello LM, Kalpathy-Cramer J, et al. The RSNA pediatric bone age machine learning challenge[J]. Radiology, 2019, 290(2): 498-503. |
33 | Beheshtian E, Putman K, Santomartino SM, et al. Generalizability and bias in a deep learning pedia-tric bone age prediction model using hand radiographs[J]. Radiology, 2022: 220505. |
34 | Back WD, Seurig S, Wagner S, et al. Forensic age estimation with Bayesian convolutional neural networks based on panoramic dental X-ray imaging[C]//International Conference on Medical Imaging with Deep Learning (MIDL). Elsevier, 2019. |
35 | Mualla N, Houssein EH, Hassan MR. Dental age estimation based on X-ray images[J]. Comput Mater Continua, 2020, 62(2): 591-605. |
36 | Kim S, Lee YH, Noh YK, et al. Age-group determination of living individuals using first molar images based on artificial intelligence[J]. Sci Rep, 2021, 11(1): 1073. |
37 | Oktay AB. Tooth detection with convolutional neural networks[C]//2017 Medical Technologies National Congress (TIPTEKNO). IEEE, 2017: 1-4. |
38 | Miki Y, Muramatsu C, Hayashi T, et al. Classification of teeth in cone-beam CT using deep convolutional neural network[J]. Comput Biol Med, 2017, 80: 24-29. |
39 | Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol, 2019, 48(4): 20180051. |
40 | Kim C, Kim D, Jeong H, et al. Automatic tooth detection and numbering using a combination of a CNN and heuristic algorithm[J]. Appl Sci, 2020, 10(16): 5624. |
41 | Mohammad N, Muad AM, Ahmad R, et al. Reclassification of Demirjian’s mandibular premolars sta-ging for age estimation based on semi-automated segmentation of deep convolutional neural network[J]. Forensic Imaging, 2021, 24: 200440. |
42 | Čular L, Tomaić M, Subašić M, et al. Dental age estimation from panoramic X-ray images using statistical models[C]//Proceedings of the 10th internatio-nal symposium on image and signal processing and analysis. IEEE, 2017: 25-30. |
43 | De Tobel J, Radesh P, Vandermeulen D, et al. An automated technique to stage lower third molar deve-lopment on panoramic radiographs for age estimation: a pilot study[J]. J Forensic Odontostomatol, 2017, 35(2): 42-54. |
44 | Merdietio Boedi R, Banar N, De Tobel J, et al. Effect of lower third molar segmentations on automa-ted tooth development staging using a convolutional neural network[J]. J Forensic Sci, 2020, 65(2): 481-486. |
45 | Banar N, Bertels J, Laurent F, et al. Towards fully automated third molar development staging in pa-noramic radiographs[J]. Int J Legal Med, 2020, 134(5): 1831-1841. |
46 | Han MQ, Du SY, Ge YY, et al. With or without human interference for precise age estimation based on machine learning[J]. Int J Legal Med, 2022, 136(3): 821-831. |
47 | Štepanovský M, Ibrová A, Buk Z, et al. Novel age estimation model based on development of permanent teeth compared with classical approach and other modern data mining methods[J]. Forensic Sci Int, 2017, 279: 72-82. |
48 | Tao J, Wang J, Wang A, et al. Dental age estimation: a machine learning perspective[C]//International Conference on Advanced Machine Learning Technologies and Applications. Springer, 2019: 722-733. |
[1] | Zhu Keshi,Liao Anqi,Yu Youcheng.. Research progress on the application of machine learning in dental implantology [J]. Int J Stomatol, 2023, 50(4): 491-498. |
[2] | Lin Huiping,Xu Ting,Lin Jun.. Research progress on artificial intelligence techniques in diagnosis of oral cancer and potentially malignant disorders [J]. Int J Stomatol, 2023, 50(2): 138-145. |
[3] | Luo En. Exploration and clinical application of artificial intelligence in orthognathic surgery [J]. Int J Stomatol, 2022, 49(2): 125-131. |
[4] | Tian Erkang,Xiang Qianrong,Zhao Xinran,Peng Jiahan,Shu Rui. Application of artificial intelligence in oral diagnosis and treatment [J]. Int J Stomatol, 2021, 48(4): 475-484. |
[5] | CHEN Jian-wei, LIU Ze-ping, GUO Jing, LIU Ren-kai, CHEN Ting-ting, ZOU Shu-juan. Dental age assessment using Demirjian′s method on Chengdu children aged from eig [J]. Inter J Stomatol, 2009, 36(3): 273-275. |