Int J Stomatol ›› 2021, Vol. 48 ›› Issue (4): 475-484.doi: 10.7518/gjkq.2021046
• Reviews • Previous Articles Next Articles
Tian Erkang1(),Xiang Qianrong1,Zhao Xinran1,Peng Jiahan1,Shu Rui2()
CLC Number:
[1] | 毕小琴, 赵佛容. 人工智能技术在口腔专科治疗及护理中的应用[J]. 华西口腔医学杂志, 2018,36(4):452-456. |
Bi XQ, Zhao FR. Application of artificial intelligen-ce in stomatology treatment and nursing[J]. West Chi-na J Stomatol, 2018,36(4):452-456. | |
[2] |
Rahman HA, Harun SW, Arof H, et al. Classification of reflected signals from cavitated tooth surfa-ces using an artificial intelligence technique incorporating a fiber optic displacement sensor[J]. J Biomed Opt, 2014,19(5):057009.
doi: 10.1117/1.JBO.19.5.057009 |
[3] | Hung K, Montalvao C, Tanaka R, et al. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review[J]. Dentomaxillofac Radiol, 2020,49(1):2019-0107. |
[4] |
Lee JH, Kim DH, Jeong SN, et al. Detection and dia-gnosis of dental caries using a deep learning-based convolutional neural network algorithm[J]. J Dent, 2018,77:106-111.
doi: 10.1016/j.jdent.2018.07.015 |
[5] |
Lu C, Lewis JS, Dupont WD, et al. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival[J]. Mod Pathol, 2017,30(12):1655-1665.
doi: 10.1038/modpathol.2017.98 |
[6] |
Hwang JJ, Jung YH, Cho BH, et al. An overview of deep learning in the field of dentistry[J]. Imaging Sci Dent, 2019,49(1):1-7.
doi: 10.5624/isd.2019.49.1.1 |
[7] |
Chen H, Zhang Y, Kalra MK, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Trans Med Imaging, 2017,36(12):2524-2535.
doi: 10.1109/TMI.2017.2715284 pmid: 28622671 |
[8] |
Wolterink JM, Leiner T, Viergever MA, et al. Gene-rative adversarial networks for noise reduction in low-dose CT[J]. IEEE Trans Med Imaging, 2017,36(12):2536-2545.
doi: 10.1109/TMI.2017.2708987 pmid: 28574346 |
[9] | Halicek M, Little JV, Wang X, et al. Optical biopsy of head and neck cancer using hyperspectral ima-ging and convolutional neural networks[J]. Proc SPIE Int Soc Opt Eng, 2018,10469:104690X. |
[10] |
Lee JH, Han SS, Kim YH, et al. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020,129(6):635-642.
doi: 10.1016/j.oooo.2019.11.007 |
[11] |
Poedjiastoeti W, Suebnukarn S. Application of convolutional neural network in the diagnosis of jaw tumors[J]. Healthc Inform Res, 2018,24(3):236-241.
doi: 10.4258/hir.2018.24.3.236 pmid: 30109156 |
[12] | Vinayahalingam S, Xi T, Bergé S, et al. Automated detection of third molars and mandibular nerve by deep learning[J]. Sci Rep, 2019,9(1):1-7. |
[13] |
Das DK, Bose S, Maiti AK, et al. Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis[J]. Tissue Cell, 2018,53:111-119.
doi: 10.1016/j.tice.2018.06.004 |
[14] |
Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm[J]. J Cancer Res Clin Oncol, 2019,145(4):829-837.
doi: 10.1007/s00432-018-02834-7 |
[15] | Ekert T, Krois J, Meinhold L, et al. Deep learning for the radiographic detection of apical lesions[J]. J Endod, 2019,45(7): 917-922. e5. |
[16] |
Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network[J]. Oral Dis, 2020,26(1):152-158.
doi: 10.1111/odi.v26.1 |
[17] |
Rajan JP, Rajan SE, Martis RJ, et al. Fog computing employed computer aided cancer classification system using deep neural network in internet of things based healthcare system[J]. J Med Syst, 2019,44(2):34.
doi: 10.1007/s10916-019-1500-5 |
[18] |
Yamaguchi S, Lee C, Karaer O, et al. Predicting the debonding of CAD/CAM composite resin crowns with AI[J]. J Dent Res, 2019,98(11):1234-1238.
doi: 10.1177/0022034519867641 |
[19] |
Pandeshwar P, Jayanthi K, Raghuram P. Pre-operative contrast enhanced computer tomographic evaluation of cervical nodal metastatic disease in oral squamous cell carcinoma[J]. Indian J Cancer, 2013,50(4):310-315.
doi: 10.4103/0019-509X.123605 pmid: 24369206 |
[20] |
Moutselos K, Berdouses E, Oulis C, et al. Recogni-zing occlusal caries in dental intraoral images using deep learning[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019,2019:1617-1620.
doi: 10.1109/EMBC.2019.8856553 pmid: 31946206 |
[21] |
Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol, 2019,48(4):20180051.
doi: 10.1259/dmfr.20180051 |
[22] | Halicek M, Little JV, Wang X, et al. Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks[J]. Proc SPIE Int Soc Opt Eng, 2018,10576:1057-605. |
[23] |
Casalegno F, Newton T, Daher R, et al. Caries detection with near-infrared transillumination using deep learning[J]. J Dent Res, 2019,98(11):1227-1233.
doi: 10.1177/0022034519871884 |
[24] |
Lee JH, Kim DH, Jeong SN, et al. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm[J]. J Periodontal Implant Sci, 2018,48(2):114-123.
doi: 10.5051/jpis.2018.48.2.114 |
[25] |
Lin PL, Huang PW, Huang PY, et al. Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H-value of fractional Brownian motion model[J]. Comput Methods Programs Biomed, 2015,121(3):117-126.
doi: 10.1016/j.cmpb.2015.05.004 pmid: 26078207 |
[26] | Abdolali F, Zoroofi RA, Otake Y, et al. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics[J]. Comput Methods Programs Bio-med, 2017,139:197-207. |
[27] |
Abdolali F, Zoroofi RA, Otake Y, et al. Automatic segmentation of maxillofacial cysts in cone beam CT images[J]. Comput Biol Med, 2016,72:108-119.
doi: 10.1016/j.compbiomed.2016.03.014 |
[28] |
Rana M, Modrow D, Keuchel J, et al. Development and evaluation of an automatic tumor segmentation tool: a comparison between automatic, semi-automa-tic and manual segmentation of mandibular odontogenic cysts and tumors[J]. J Craniomaxillofac Surg, 2015,43(3):355-359.
doi: 10.1016/j.jcms.2014.12.005 |
[29] |
Ashizawa K, Yoshimura K, Johno H, et al. Construction of mass spectra database and diagnosis algori-thm for head and neck squamous cell carcinoma[J]. Oral Oncol, 2017,75:111-119.
doi: 10.1016/j.oraloncology.2017.11.008 |
[30] | 陈青筱, 吕培军. 临床决策支持系统的研究现状及其在口腔修复领域的应用[J]. 实用口腔医学杂志, 2016,32(5):722-726. |
Chen QX, Lü PJ. Research status of clinical decision support system and its application in the field of pro-sthodontics[J]. J Pract Stomatol, 2016,32(5):722-726. | |
[31] | 吕培军, 李国珍, 王毓英, 等. 计算机辅助可摘式局部义齿设计的专家系统[J]. 中华口腔医学杂志, 1993,28(1):9-11. |
Lü PJ, Li GZ, Wang YY, et al. The expert system of computer aided design of removable partial denture[J]. Chin J Stomatol, 1993,28(1):9-11. | |
[32] |
Wei JQ, Peng MD, Li Q, et al. Evaluation of a novel computer color matching system based on the improved back-propagation neural network model[J]. J Prosthodont, 2018,27(8):775-783.
doi: 10.1111/jopr.2018.27.issue-8 |
[33] | Aliaga IJ, Vera V, De Paz JF, et al. Modelling the longevity of dental restorations by means of a CBR system[J]. Biomed Res Int, 2015,2015:540306. |
[34] | Weiss R 2nd, Read-Fuller A. Cone beam computed tomography in oral and maxillofacial surgery: an evidence-based review[J]. Dent J (Basel), 2019,7(2):52. |
[35] |
Chiarelli T, Franchini F, Lamma A, et al. From implant planning to surgical execution: an integrated approach for surgery in oral implantology[J]. Int J Med Robot, 2012,8(1):57-66.
doi: 10.1002/rcs.422 |
[36] |
Fortin T, Camby E, Alik M, et al. Panoramic images versus three-dimensional planning software for oral implant planning in atrophied posterior maxillary: a clinical radiological study[J]. Clin Implant Dent Relat Res, 2013,15(2):198-204.
doi: 10.1111/cid.2013.15.issue-2 |
[37] |
Takada K. Artificial intelligence expert systems with neural network machine learning may assist decision-making for extractions in orthodontic treatment planning[J]. J Evid Based Dent Pract, 2016,16(3):190-192.
doi: S1532-3382(16)30095-1 pmid: 27855838 |
[38] | 赵越, 陆正福, 于兵. 计算机辅助口腔正畸诊断系统的研究[J]. 计算机与数字工程, 2008,36(4):44-46. |
Zhao Y, Lu ZF, Yu B. Study on the expert system by computer-aided orthodontic diagnosis[J]. Comput Di-git Eng, 2008,36(4):44-46. | |
[39] |
Noroozi H. Orthodontic treatment planning software[J]. Am J Orthod Dentofac Orthop, 2006,129(6):834-837.
doi: 10.1016/j.ajodo.2006.02.025 |
[40] | 申龙朵, 段世均, 汤炜. 专家系统在口腔医学领域中的应用进展[J]. 现代生物医学进展, 2012,12(13):2585-2587. |
Shen LD, Duan SJ, Tang W. Application progress of the expert system in dentistry[J]. Prog Mod Biomed, 2012,12(13):2585-2587. | |
[41] | Mago VK, Mago A, Sharma P, et al. Fuzzy logic based expert system for the treatment of mobile tooth[J]. Adv Exp Med Biol, 2011,696:607-614. |
[42] |
Machado JP, Lam XT, Chen JW. Use of a clinical decision support tool for the management of traumatic dental injuries in the primary dentition by no-vice and expert clinicians[J]. Dent Traumatol, 2018,34(2):120-128.
doi: 10.1111/edt.2018.34.issue-2 |
[43] |
Alarifi A, AlZubi AA. Memetic search optimization along with genetic scale recurrent neural network for predictive rate of implant treatment[J]. J Med Syst, 2018,42(11):202.
doi: 10.1007/s10916-018-1051-1 |
[44] |
Peterman RJ, Jiang S, Johe R, et al. Accuracy of Dolphin visual treatment objective (VTO) prediction software on Class Ⅲ patients treated with maxillary advancement and mandibular setback[J]. Prog Orthod, 2016,17(1):19.
doi: 10.1186/s40510-016-0132-2 pmid: 27312722 |
[45] |
Park WJ, Park JB. History and application of artificial neural networks in dentistry[J]. Eur J Dent, 2018,12(4):594-601.
doi: 10.4103/ejd.ejd_325_18 |
[46] |
Pereira KR, Sinha R. Welcome the “new kid on the block” into the family: artificial intelligence in oral and maxillofacial surgery[J]. Br J Oral Maxillofac Surg, 2020,58(1):83-84.
doi: 10.1016/j.bjoms.2019.08.011 |
[47] |
Bur AM, Holcomb A, Goodwin S, et al. Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma[J]. Oral Oncol, 2019,92:20-25.
doi: 10.1016/j.oraloncology.2019.03.011 |
[48] |
Gui H, Yang H, Shen SG, et al. Image-guided surgical navigation for removal of foreign bodies in the deep maxillofacial region[J]. J Oral Maxillofac Surg, 2013,71(9):1563-1571.
doi: 10.1016/j.joms.2013.04.001 |
[49] |
Li P, Xuan M, Liao CH, et al. Application of intraope-rative navigation for the reconstruction of mandibular defects with microvascular fibular flaps-preliminary clinical experiences[J]. J Craniofacial Surg, 2016,27(3):751-755.
doi: 10.1097/SCS.0000000000002430 |
[50] |
Essig H, Dressel L, Rana M, et al. Precision of posttraumatic primary orbital reconstruction using individually bent titanium mesh with and without navigation: a retrospective study[J]. Head Face Med, 2013,9:18.
doi: 10.1186/1746-160X-9-18 |
[51] |
Jiang W, Ma L, Zhang B, et al. Evaluation of the 3D augmented reality-guided intraoperative positioning of dental implants in edentulous mandibular models[J]. Int J Oral Maxillofac Implants, 2018,33(6):1219-1228.
doi: 10.11607/jomi.6638 |
[52] |
Suenaga H, Hoang Tran H, Liao H, et al. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study[J]. Int J Oral Sci, 2013,5(2):98-102.
doi: 10.1038/ijos.2013.26 |
[53] |
Yu H, Wang X, Zhang S, et al. Navigation-guided en bloc resection and defect reconstruction of craniomaxillary bony tumours[J]. Int J Oral Maxillofac Surg, 2013,42(11):1409-1413.
doi: 10.1016/j.ijom.2013.05.011 |
[54] |
Gui HJ, Wu JY, Shen SGF, et al. Navigation-guided lateral gap arthroplasty as the treatment of temporomandibular joint ankylosis[J]. J Oral Maxillofac Surg, 2014,72(1):128-138.
doi: 10.1016/j.joms.2013.07.039 |
[55] |
Gui HJ, Zhang SL, Shen SGF, et al. Real-time ima-ge-guided recontouring in the management of craniofacial fibrous dysplasia[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013,116(6):680-685.
doi: 10.1016/j.oooo.2013.07.012 |
[56] |
Zhang YD, Zhao ZF, Song RJ, et al. Tooth arrangement for the manufacture of a complete denture u-sing a robot[J]. Ind Robot, 2001,28(5):420-425.
doi: 10.1108/01439910110401286 |
[57] |
Shi Y, Lin L, Zhou C, et al. A study of an assisting robot for mandible plastic surgery based on augmented reality[J]. Minim Invasive Ther Allied Technol, 2017,26(1):23-30.
doi: 10.1080/13645706.2016.1216864 |
[58] |
Holsinger FC. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: next-generation robotic head and neck surgery[J]. Laryngoscope, 2016,126(4):864-869.
doi: 10.1002/lary.25724 |
[59] |
Theodossy T, Bamber MA. Model surgery with a passive robot arm for orthognathic surgery planning[J]. J Oral Maxillofac Surg, 2003,61(11):1310-1317.
doi: 10.1016/S0278-2391(03)00733-X |
[60] | 陈黎明, 栾楠, 张诗雷, 等. 颅颌面骨畸形整复手术中辅助机器人的应用[J]. 机械与电子, 2010,28(4):57-60. |
Chen LM, Luan N, Zhang SL, et al. Research on the application of multi DOF robot on orthognathic navi-gation surgery[J]. Mach Electron, 2010,28(4):57-60. | |
[61] |
Khan K, Dobbs T, Swan MC, et al. Trans-oral robo-tic cleft surgery (TORCS) for palate and posterior pharyngeal wall reconstruction: a feasibility study[J]. J Plast Reconstr Aesthet Surg, 2016,69(1):97-100.
doi: 10.1016/j.bjps.2015.08.020 |
[62] |
Omar EA, Bamber MA. Orthognathic model surgery by using of a passive Robot Arm[J]. Saudi Dent J, 2010,22(2):47-55.
doi: 10.1016/j.sdentj.2010.02.006 |
[63] |
Nadjmi N. Transoral robotic cleft palate surgery[J]. Cleft Palate Craniofac J, 2016,53(3):326-331.
doi: 10.1597/14-077 |
[64] |
Kayhan FT, Kaya H, Yazici ZM. Transoral robotic surgery for tongue-base adenoid cystic carcinoma[J]. J Oral Maxillofac Surg, 2011,69(11):2904-2908.
doi: 10.1016/j.joms.2011.01.049 |
[65] |
Walvekar RR, Peters G, Hardy E, et al. Robotic-assisted transoral removal of a bilateral floor of mouth ranulas[J]. World J Surg Oncol, 2011,9:78.
doi: 10.1186/1477-7819-9-78 pmid: 21767364 |
[66] |
Genden EM, Desai S, Sung CK. Transoral robotic surgery for the management of head and neck cancer: a preliminary experience[J]. Head Neck, 2009,31(3):283-289.
doi: 10.1002/hed.v31:3 |
[67] | 史俊斌. 世界首台自主式种植牙手术机器人在西安问世[J]. 人人健康, 2017(20):49. |
Shi JB. The world’s first autonomous implant sur-gery robot came out in Xi’an[J]. Health Everyone, 2017(20):49. | |
[68] | Ma Q, Kobayashi E, Wang J, et al. Development and preliminary evaluation of an autonomous surgical sy-stem for oral and maxillofacial surgery[J]. Int J Med Robot, 2019,15(4):e1997. |
[69] | 王芳. 精准医学时代下的精准临床护理定位的思考[J]. 全科护理, 2017,15(9):1043-1045. |
Wang F. Thinking on precise clinical nursing posi-tioning in the era of precise medicine[J]. Chin Gen Pract Nurs, 2017,15(9):1043-1045. | |
[70] |
Scheerman JFM, van Meijel B, van Empelen P, et al. The effect of using a mobile application (“WhiteTeeth”) on improving oral hygiene: a randomized controlled trial[J]. Int J Dent Hyg, 2020,18(1):73-83.
doi: 10.1111/idh.12415 pmid: 31291683 |
[71] |
Fu SW, Li PC, Lai YH, et al. Joint dictionary lear-ning-based non-negative matrix factorization for voi-ce conversion to improve speech intelligibility after oral surgery[J]. IEEE Trans Biomed Eng, 2017,64(11):2584-2594.
doi: 10.1109/TBME.10 |
[72] |
Mishra R, Burke A, Gitman B, et al. Data-driven method to enhance craniofacial and oral phenotype vocabularies[J]. J Am Dent Assoc, 2019,150(11): 933-939. e2.
doi: 10.1016/j.adaj.2018.06.020 |
[1] | Zhu Keshi,Liao Anqi,Yu Youcheng.. Research progress on the application of machine learning in dental implantology [J]. Int J Stomatol, 2023, 50(4): 491-498. |
[2] | Lin Huiping,Xu Ting,Lin Jun.. Research progress on artificial intelligence techniques in diagnosis of oral cancer and potentially malignant disorders [J]. Int J Stomatol, 2023, 50(2): 138-145. |
[3] | Tang Yueting,Dai Jiaqi,Dong Wenxuan,Wang Hu,Guo Jixiang,You Meng. Research progress of dental age evaluation based on machine learning methods [J]. Int J Stomatol, 2023, 50(2): 146-151. |
[4] | Luo En. Exploration and clinical application of artificial intelligence in orthognathic surgery [J]. Int J Stomatol, 2022, 49(2): 125-131. |
[5] | Yang Jiazhen,Zhang Ying,Liu Yuhan,Li Fan,Zeng Fei,Li Xiuzhen,Ma Yuying,Yang Fang. Time variation trend of bacterial community in oral diagnosis and treatment environment [J]. Int J Stomatol, 2022, 49(2): 132-137. |