Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (5): 597-602.doi: 10.7518/gjkq.2018.05.017
• Reviews • Previous Articles Next Articles
Tongtong Han,Qiaoer Chen(),Youming. Zhu
CLC Number:
[1] |
云霞, 达林泰, 田玮 , 等. 口腔鳞癌中β-catenin和p53蛋白的表达及其临床意义[J]. 内蒙古医学杂志, 2015,47(4):385-388, 514.
doi: 10.16096/J.cnki.nmgyxzz.2015.47.04.001 |
Yun X, Da LT, Tian W , et al. Expression of β-ca-tenin and p53 protein in oral squamous cell carcinoma and their clinical significance[J]. Inner Mongolia Med J, 2015,47(4):385-388, 514.
doi: 10.16096/J.cnki.nmgyxzz.2015.47.04.001 |
|
[2] |
Melo CA, Léveillé N, Rooijers K , et al. A p53-bound enhancer region controls a long intergenic noncoding RNA required for p53 stress response[J]. Oncogene, 2016,35(33):4399-4406.
doi: 10.1038/onc.2015.502 |
[3] |
冯昭飞, 陈瑞扬 . p53基因突变与口腔肿瘤关系的研究进展[J]. 医学综述, 2008,14(14):2113-2115.
doi: 10.3969/j.issn.1006-2084.2008.14.011 |
Feng ZF, Chen RY . Study progress of the relationship between p53 gene mutation and oral tumor[J]. Med Recap, 2008,14(14):2113-2115.
doi: 10.3969/j.issn.1006-2084.2008.14.011 |
|
[4] |
Zhai N, Xia Y, Yin R , et al. A negative regulation loop of long noncoding RNA HOTAIR and p53 in non-small-cell lung cancer[J]. Onco Targets Ther, 2016,9:5713-5720.
doi: 10.2147/OTT |
[5] | 王莹, 辛彦 . Hippo通路和相关长链非编码RNA(LncRNA)与肿瘤关系的研究进展[J]. 现代肿瘤医学, 2015,23(21):3190-3193. |
Wang Y, Xin Y . Hippo signal pathway and related LncRNA in tumors[J]. J Modern Oncol, 2015,23(21):3190-3193. | |
[6] |
Mercer TR, Dinger ME, Mattick JS , Long non-coding RNAs: insights into functions[J]. Nat Rev Genet, 2009,10(3):155-159.
doi: 10.1038/nrg2521 |
[7] |
Spizzo R, Almeida MI, Colombatti A , et al. Long non-coding RNAs and cancer: a new frontier of tran-slational research[J]. Oncogene, 2012,31(43):4577-4587.
doi: 10.1038/onc.2011.621 pmid: 22266873 |
[8] | 徐伟华 . 长链非编码RNA URHC在肝癌细胞增殖与凋亡中的作用及机制研究[D]. 西安: 第四军医大学, 2014. |
Xu WH . The function and mechanism of long non-coding RNA URHC on cell proliferation and apopto-sis in human hepatoma cells[D]. Xi’an: The Fourth Military Medical University, 2014. | |
[9] |
Gupta RA, Shah N, Wang KC , et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010,464(7291):1071-1076.
doi: 10.1038/nature08975 pmid: 3049919 |
[10] |
Hou P, Zhao Y, Li Z , et al. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis[J]. Cell Death Dis, 2014,5(6):e1287-e1287.
doi: 10.1038/cddis.2014.249 |
[11] |
陈沁楠, 王朝霞 . 长链非编码 RNA GAS5在肿瘤研究中的进展[J]. 现代肿瘤医学, 2016,24(1):138-140.
doi: 10.3969/j.issn.1672-4992.2016.01.040 |
Chen QN, Wang ZX . Advancements of long non- coding RNA GAS5 in tumor research[J]. J Modern Oncol, 2016,24(1):138-140.
doi: 10.3969/j.issn.1672-4992.2016.01.040 |
|
[12] |
Grossi E, Sánchez Y, Huarte M , Expanding the p53 regulatory network: LncRNAs take up the challenge[J]. Biochim Biophys Acta, 2016,1859(1):200-208.
doi: 10.1016/j.bbagrm.2015.07.011 pmid: 26196323 |
[13] | 魏晨晨, 王朝霞 . 长链非编码RNA H19在肿瘤研究中的进展[J]. 临床肿瘤学杂志, 2015,20(11):1041-1044. |
Wei CC, Wang ZX . Progression of long non-coding RNA H19 in tumors[J]. Chin Clin Oncol, 2015,20(11):1041-1044. | |
[14] |
Adriaenssens E, Dumont L, Lottin S , et al. H19 over-expression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression[J]. Am J Pathol, 1998,153(5):1597-1607.
doi: 10.1016/S0002-9440(10)65748-3 |
[15] |
Yang F, Bi JW, Xue XC , et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells[J]. FEBS J, 2012,279(17):3159-3165.
doi: 10.1111/j.1742-4658.2012.08694.x |
[16] | Liu FT, Pan H, Xia GF , et al. Prognostic and clinico-pathological significance of long noncoding RNA H19 overexpression in human solid tumors: evidence from a meta-analysis[J]. Oncotarget, 2016,7(50):83177-83186. |
[17] |
Zhang J, Zhang P, Wang L , et al. Long non-coding RNA HOTAIR in carcinogenesis and metastasis[J]. Acta Biochim Biophys Sin, 2014,46(1):1-5.
doi: 10.1093/abbs/gmt117 |
[18] |
Yu X, Li Z , Long non-coding RNA HOTAIR: a novel oncogene (review)[J]. Mol Med Rep, 2015,12(4):5611-5618.
doi: 10.3892/mmr.2015.4161 pmid: 26238267 |
[19] |
Liu YW, Sun M, Xia R , et al. LincHOTAIR epi-genetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer[J]. Cell Death Dis, 2015,6(7):e1802.
doi: 10.1038/cddis.2015.150 |
[20] |
Hu DM, Su CJ, Jiang M , et al. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3[J]. Biochem Biophys Res Commun, 2016,471(2):290-295.
doi: 10.1016/j.bbrc.2016.01.169 |
[21] |
Zhu JJ, Liu SS, Ye FQ , et al. Long noncoding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells[J]. PloS One, 2015,10(10):e0139790.
doi: 10.1371/journal.pone.0139790 |
[22] |
Zhang J, Lin ZQ, Gao YL , et al. Downregulation of long noncoding RNA MEG3 is associated with poor prognosis and promoter hypermethylation in cervical cancer[J]. J Exp Clin Cancer Res, 2017,36(1):5.
doi: 10.1186/s13046-016-0472-2 |
[23] |
Chen RP, Huang ZL, Liu LX , et al. Involvement of endoplasmic reticulum stress and p53 in lncRNA MEG3-induced human hepatoma HepG2 cell apoptosis[J]. Oncol Rep, 2016,36(3):1649-1657.
doi: 10.3892/or.2016.4919 |
[24] |
Zhan HX, Wang Y, Li C , et al. LincRNA-ROR pro-motes invasion, metastasis and tumor growth in pan-creatic cancer through activating ZEB1 pathway[J]. Cancer Lett, 2016,374(2):261-271.
doi: 10.1016/j.canlet.2016.02.018 |
[25] |
Chen YM, Liu Y, Wei HY , et al. Linc-ROR induces epithelial-mesenchymal transition and contributes to drug resistance and invasion of breast cancer cells[J]. Tumor Biol, 2016,37(8):10861-10870.
doi: 10.1007/s13277-016-4909-1 |
[26] | Chen SA, Ma PP, Zhao Y , et al. Biological function and mechanism of MALAT-1 in renal cell carcinoma proliferation and apoptosis: role of the MALAT-1-Livin protein interaction[J]. J Physiol Sci, 2016,67(5):577-585. |
[27] |
Huang JK, Ma L, Song WH , et al. MALAT1 promotes the proliferation and invasion of thyroid cancer cells via regulating the expression of IQGAP1[J]. Biomed Pharmacother, 2016,83:1-7.
doi: 10.1016/j.biopha.2016.05.039 |
[28] | Yao WJ, Bai Y, Li Y , et al. Upregulation of MALAT-1 and its association with survival rate and the effect on cell cycle and migration in patients with esophageal squamous cell carcinoma[J]. Tumor Biol, 2015,37(4):4305-4312. |
[29] | Han T, Jiao F, Hu H , et al. EZH2 promotes cell mi-gration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer[J]. Oncotarget, 2016,7(10):11194-11207. |
[30] | Zhang Y, Wang T, Huang HQ , et al. Human MALAT-1 long non-coding RNA is overexpressed in cervical cancer metastasis and promotes cell proliferation, in- vasion and migration[J]. J BUON, 2015,20(6):1497-1503. |
[31] | Chang SM, Hu WW , Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis[J]. J Cell Physiol, 2017,233(4):3384-3396. |
[32] |
Zhou X, Liu S, Cai G , et al. Long Non coding RNA MALAT1 promotes tumor growth and metastasis by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma[J]. Sci Rep, 2015,5:15972.
doi: 10.1038/srep15972 |
[33] |
Zhang TH, Liang LZ, Liu XL , et al. Long non-coding RNA MALAT1 interacts with miR-124 and modulates tongue cancer growth by targeting JAG1[J]. Oncol Rep, 2017,37(4):2087-2094.
doi: 10.3892/or.2017.5445 |
[34] |
Fang Z, Zhang S, Wang Y , et al. Long non-coding RNA MALAT-1 modulates metastatic potential of tongue squamous cell carcinomas partially through the regulation of small proline rich proteins[J]. BMC Cancer, 2016,16:706.
doi: 10.1186/s12885-016-2735-x |
[35] |
Wu YS, Zhang L, Zhang L , et al. Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cad-herin in oral squamous cell carcinoma[J]. Int J Oncol, 2015,46(6):2586-2594.
doi: 10.3892/ijo.2015.2976 |
[36] | Liu H, Li Z, Wang C , et al. Expression of long non-coding RNA-HOTAIR in oral squamous cell carcinoma Tca8113 cells and its associated biological behavior[J]. Am J Transl Res, 2016,8(11):4726-4734. |
[37] |
Jia LF, Wei SB, Gan YH , et al. Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma[J]. Int J Cancer, 2014,135(10):2282-2293.
doi: 10.1002/ijc.28667 pmid: 24343426 |
[38] |
Liu ZX, Wu C, Xie NN , et al. Long non-coding RNA MEG3 inhibits the proliferation and metastasis of oral squamous cell carcinoma by regulating the WNT/β-catenin signaling pathway[J]. Oncol Lett, 2017,14(4):4053-4058.
doi: 10.3892/ol.2017.6682 |
[39] | Zhang DM, Lin ZY, Yang ZH , et al. IncRNA H19 promotes tongue squamous cell carcinoma progression through β-catenin/GSK3β/EMT signaling via asso-ciation with EZH2[J]. Am J Transl Res, 2017,9(7):3474-3486. |
[1] | Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44. |
[2] | Jiang Yueying,He Yutian,Li Ting,Zhou Ronghui.. Research progress on the application of near infrared fluorescence probe in the diagnosis of oral cancer [J]. Int J Stomatol, 2023, 50(4): 407-413. |
[3] | Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478. |
[4] | Zhang Chaoying,Li Yining,Gong Jiaxing,Wang Huiming. Interpretation of the 2022 classification of head and neck tumors by the World Health Organization: odontogenic and maxillofacial bone tumors [J]. Int J Stomatol, 2023, 50(3): 263-271. |
[5] | Lin Huiping,Xu Ting,Lin Jun.. Research progress on artificial intelligence techniques in diagnosis of oral cancer and potentially malignant disorders [J]. Int J Stomatol, 2023, 50(2): 138-145. |
[6] | Wang Taiping,Shi Xinglian,Li Zhezhen,Liu Mei,Jiang Jianhong. Analysis of psychological factors and intervention in patients with oral cancer [J]. Int J Stomatol, 2023, 50(2): 203-209. |
[7] | Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599. |
[8] | Kong Lixin,Ren Biao,Cheng Lei. Research progress on regulation of cyclooxygenase-2/prostaglandin E2 pathway on oral cancer [J]. Int J Stomatol, 2020, 47(4): 431-438. |
[9] | Huang Lu,Dai Jie,Wu Yanmin. Application of saliva biomarkers in oral cancer screening [J]. Int J Stomatol, 2020, 47(1): 68-75. |
[10] | Yuan Zhenying,Guan Cuiqiang,Nan Xinrong. Research progress on DNA methylation and oral disease [J]. Int J Stomatol, 2019, 46(4): 437-441. |
[11] | Qun Li,Weiqun Guan,Yang’an Zhang,Zhichao. Huang. Expression of periostin and p53 in oral leukoplakia and oral squamous cell carcinoma [J]. Inter J Stomatol, 2019, 46(1): 5-11. |
[12] | Yuanyuan Li,Bin Cheng,Yun Wang. Effects of long non-coding RNA lnc-p26090 on the glycolysis and proliferation in oral squamous cell carcinoma [J]. Inter J Stomatol, 2018, 45(6): 628-634. |
[13] | Yiting Wang,Yongwen He. Advances in long non-coding RNA regulation of epithelial-mesenchymal transition in oral squamous cancer [J]. Inter J Stomatol, 2018, 45(6): 635-639. |
[14] | Qian Li,Ping Zhang,Jiao Chen,Xin Zeng,Yun Feng. Progress of salivaomics in diagnosis of oral cancer [J]. Inter J Stomatol, 2018, 45(6): 710-715. |
[15] | Song Hongning, Wang Xuxia, Zhang Jun. Long non-coding RNA and its relationship with oral cancer [J]. Inter J Stomatol, 2018, 45(4): 425-432. |