Int J Stomatol ›› 2019, Vol. 46 ›› Issue (4): 450-455.doi: 10.7518/gjkq.2019031

• Reviews • Previous Articles     Next Articles

Review of NLRP3 inflammasomes in periodontal diseases

Zhu Bowen1,Chen Limei1,Guo Zhuling1,2()   

  1. 1. School of Stomatology, Hainan Medical University, Haikou 570100, China
    2. Dept. of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou 570100, China
  • Received:2018-04-08 Revised:2019-01-02 Online:2019-07-01 Published:2019-07-12
  • Supported by:
    This study was supported by Hainan Provincial Natural Science Foundation(817330);Scientific Research Projects of Higher Education Institutions in Hainan Province(Hnky2017-31);Young Talents’ Science and Technology Innovation Project of Hainan Association for Science and Technology(QCXM201817);Youth Development Fund Project of the First Affiliated Hospital of Hainan Medical University(HYFYPY201702);Course Construction Project of Hainan Medical University(HYJW201834)

Abstract:

Periodontal disease is considered as the joint effort of microbial infection and immunoinflammatory responses. The association between NLRP3 inflammasome and periodontal disease has been confirmed in many experiments. The reverse states, activation and inhibition of NLRP3 inflammasome have received increasing attention. In the progress of periodontal disease, the explanations for the activation and inhibition of the NLRP3 inflammasome have not been unified with the triggering conditions and the switching process. Studies on NLRP3 inflammasome gene mutation or gene polymorphism in periodontal disease have just been initiated. This article briefly describes the NLRP3 inflammasome and highlights the currently accepted hypothesis of the activation of this oligomer and the finding regarding various inhibitory mechanisms.

Key words: NLRP3, inflammasome, periodontal disease, immunoinflammatory responses

CLC Number: 

  • R781.4

TrendMD: 

Fig 1

Composition and assembly of NLRP3 inflammasome"

Fig 2

Signaling models of NLRP3 inflammasome"

[1] Wu YY, Xiao E, Graves DT . Diabetes mellitus related bone metabolism and periodontal disease[J]. Int J Oral Sci, 2015,7(2):63-72.
[2] Guo H, Callaway JB, Ting JP . Inflammasomes: mechanism of action, role in disease, and therapeutics[J]. Nat Med, 2015,21(7):677-687.
[3] Strowig T, Henao-Mejia J, Elinav E , et al. Inflammasomes in health and disease[J]. Nature, 2012,481(7381):278-286.
doi: 10.1038/nature10759
[4] de Zoete MR, Palm NW, Zhu S , et al. Inflammasomes[J]. Cold Spring Harb Perspect Biol, 2014,6(12):a016287.
[5] Bostanci N, Emingil G, Saygan B , et al. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases[J]. Clin Exp Immunol, 2009,157(3):415-422.
[6] Chen G, Shaw MH, Kim YG , et al. NOD-like receptors: role in innate immunity and inflammatory disease[J]. Annu Rev Pathol, 2009,4:365-398.
[7] Schroder K, Tschopp J . The inflammasomes[J]. Cell, 2010,140(6):821-832.
[8] Ting JP, Lovering RC, Alnemri ES , et al. The NLR gene family: a standard nomenclature[J]. Immunity, 2008,28(3):285-287.
doi: 10.1016/j.immuni.2008.02.005
[9] 吴冷, 王骏, 赵蕾 , 等. 核苷酸结合寡聚化结构域样受体热蛋白结构域亚家族成员3炎性小体的活化调节与牙周疾病的关系[J]. 国际口腔医学杂志, 2015,42(6):710-714.
Wu L, Wang J, Zhao L , et al. Nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 inflammasomes and the relationship between it and periodontal diseases[J]. Int J Stomatol, 2015,42(6):710-714.
[10] Xue F, Shu R, Xie Y . The expression of NLRP3, NLRP1 and AIM2 in the gingival tissue of periodontitis patients: RT-PCR study and immunohistochemistry[J]. Arch Oral Biol, 2015,60(6):948-958.
[11] Isaza-Guzmán DM, Medina-Piedrahíta VM , Gu-tiérrez-Henao C, et al. Salivary levels of NLRP3 in- flammasome-related proteins as potential biomarkers of periodontal clinical status[J]. J Periodontol, 2017,88(12):1329-1338.
[12] Olsen I, Yilmaz Ö . Modulation of inflammasome activity by Porphyromonas gingivalis in periodontitis and associated systemic diseases[J]. J Oral Microbiol, 2016,8:30385.
[13] Abderrazak A, Syrovets T, Couchie D , et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases[J]. Redox Biol, 2015,4:296-307.
[14] Taxman DJ, Swanson KV, Broglie PM , et al. Por-phyromonas gingivalis mediates inflammasome repression in polymicrobial cultures through a novel mechanism involving reduced endocytosis[J]. J Biol Chem, 2012,287(39):32791-32799.
[15] Shimada K, Crother TR, Karlin J , et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis[J]. Immunity, 2012,36(3):401-414.
doi: 10.1016/j.immuni.2012.01.009
[16] Almeida-da-Silva CLC, Morandini AC, Ulrich H , et al. Purinergic signaling during Porphyromonas gingivalis infection[J]. Biomed J, 2016,39(4):251-260.
[17] Ramos-Junior ES, Morandini AC , Almeida-da-Silva CL, et al. A dual role for P2X7 receptor during Porphyromonas gingivalis infection[J]. J Dent Res, 2015,94(9):1233-1242.
[18] Park E, Na HS, Song YR , et al. Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection[J]. Infect Immun, 2014,82(1):112-123.
doi: 10.1128/IAI.00862-13
[19] Hung SC, Choi CH, Said-Sadier N , et al. P2X4 assembles with P2X7 and pannexin-1 in gingival epithelial cells and modulates ATP-induced reactive oxygen species production and inflammasome activation[J]. PLoS One, 2013,8(7):e70210.
[20] Morandini AC, Ramos-Junior ES, Potempa J , et al. Porphyromonas gingivalis fimbriae dampen P2X7-dependent interleukin-1β secretion[J]. J Innate Immun, 2014,6(6):831-845.
doi: 10.1159/000363338
[21] Guo ZL, Yu B, Ning BT , et al. Genetically modified “obligate” anaerobic Salmonella typhimurium as a therapeutic strategy for neuroblastoma[J]. J Hematol Oncol, 2015,8:99.
[22] Choi CH, Spooner R, DeGuzman J , et al.Porphyromonas gingivalis-nucleoside-diphosphate-kinase in- hibits ATP-induced reactive-oxygen-species via P2X7 receptor/NADPH-oxidase signalling and contributes to persistence[J]. Cell Microbiol, 2013, 15(6): 961-976
doi: 10.1111/cmi.12089
[23] Johnson L, Atanasova KR, Bui PQ , et al. Porphyromonas gingivalis attenuates ATP-mediated inflammasome activation and HMGB1 release through expression of a nucleoside-diphosphate kinase[J]. Microbes Infect, 2015,17(5):369-377.
[24] Montenegro Raudales JL, Yoshimura A, Sm Z , et al. Dental calculus stimulates interleukin-1β secretion by activating NLRP3 inflammasome in human and mouse phagocytes[J]. PLoS One, 2016,11(9):e0162865.
[25] Huang X, Yu T, Ma C , et al. Macrophages play a key role in the obesity-induced periodontal innate immune dysfunction via nucleotide-binding oligomerization domain-like receptor protein 3 pathway[J]. J Periodontol, 2016,87(10):1195-1205.
[26] Yilmaz O, Sater AA, Yao L , et al. ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis [J]. Cell Microbiol, 2010,12(2):188-198.
[27] Guo W, Wang P, Liu Z , et al. The activation of pyrin domain-containing-3 inflammasome depends on lipopolysaccharide from Porphyromonas gingivalis and extracellular adenosine triphosphate in cultured oral epithelial cells[J]. BMC Oral Health, 2015,15(1):133.
[28] Huck O, Elkaim R, Davideau JL , et al. Porphyromonas gingivalis-impaired innate immune response via NLRP3 proteolysis in endothelial cells[J]. Innate Immun, 2015,21(1):65-72.
[29] Belibasakis GN, Guggenheim B, Bostanci N . Down-regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis[J]. Innate Immun, 2013,19(1):3-9.
[30] Bostanci N, Meier A, Guggenheim B , et al. Regulation of NLRP3 and AIM2 inflammasome gene ex-pression levels in gingival fibroblasts by oral biofilms[J]. Cell Immunol, 2011,270(1):88-93.
doi: 10.1016/j.cellimm.2011.04.002
[31] Yamaguchi Y, Kurita-Ochiai T, Kobayashi R , et al. Activation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated atherosclerosis[J]. Pathog Dis, 2015,73(4). doi: 10.1093/femspd/ftv011.
[32] Belibasakis GN, Johansson A . Aggregatibacter actinomycetemcomitans targets NLRP3 and NLRP6 inflammasome expression in human mononuclear leukocytes[J]. Cytokine, 2012,59(1):124-130.
doi: 10.1016/j.cyto.2012.03.016
[33] Hajishengallis G . Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015,15(1):30-44.
[34] Laine ML, Crielaard W, Loos BG . Genetic suscepti-bility to periodontitis[J]. Periodontol 2000, 2012,58(1):37-68.
[35] Schoultz I, Verma D, Halfvarsson J , et al. Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn’s disease in Swedish men[J]. Am J Gastroenterol, 2009,104(5):1180-1188.
[36] Isaza-Guzmán DM, Hernández-Viana M, Bonilla-León DM , et al. Determination of NLRP3 (rs4612666) and IL-1B (rs1143634) genetic polymorphisms in periodontally diseased and healthy subjects[J]. Arch Oral Biol, 2016,65:44-51.
[37] Bullón P, Castejón-Vega B, Román-Malo L , et al. Autophagic dysfunction in patients with Papillon-Lefèvre syndrome is restored by recombinant cathepsin C treatment[J]. J Allergy Clin Immunol, 2018, 142(4):1131.e7-1143.e7.
[38] Miskiewicz A, Szparecki G, Durlik M , et al. The Q705K and F359L single-nucleotide polymorphisms of NOD-like receptor signaling pathway: association with chronic pancreatitis, pancreatic cancer, and periodontitis[J]. Arch Immunol Ther Exp (Warsz), 2015,63(6):485-494.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[3] Li Weiguang,Wu Yafei,Guo Shujuan.. Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease [J]. Int J Stomatol, 2022, 49(6): 724-730.
[4] Chen Siting,Zhong Xiong,Meng Wenxia.. Research progress on Nod-like receptor protein 3 inflammasome in oral mucosal diseases [J]. Int J Stomatol, 2022, 49(4): 471-475.
[5] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[6] Mu Xinyue,Liu Shutai. Research progress on motivational interviewing in the management of patients with periodontal disease [J]. Int J Stomatol, 2022, 49(1): 94-99.
[7] Bai Haoliang,Yang He,Zhao Lei. Research progress on periodontal disease risk assessment and prognosis judgment tools [J]. Int J Stomatol, 2021, 48(6): 696-702.
[8] Zhou Wanhang,Li Yanfei,Xu Ricong,Wan Qijun. Effects of non-surgical periodontal treatment on risk factors of chronic kidney disease and systematic inflammatory levels in patients with chronic kidney disease and periodontal disease: a Meta-analysis [J]. Int J Stomatol, 2021, 48(5): 528-535.
[9] Shen Yifen,Liu Chao,Tang Ying,Gu Yongchun. Research progress on effects of electronic cigarette exposure on periodontal health [J]. Int J Stomatol, 2021, 48(3): 347-353.
[10] Qin Xiaoru,Liu Mengyuan. Association between periodontal disease and myocardial infarction: a Meta-analysis of cohort studies [J]. Int J Stomatol, 2021, 48(2): 165-172.
[11] Chen Liang,Ding Yi,Meng Shu. Research progress of host modulation therapy in the treatment of periodontal diseases [J]. Int J Stomatol, 2020, 47(6): 706-710.
[12] Jia Leming,Jia Xiaoyue,Yang Ran,Zhou Xuedong,Xu Xin. Progress on the application of probiotics in the management of periodontal diseases [J]. Int J Stomatol, 2020, 47(5): 515-521.
[13] Liu Lin,Zhou Jieyu,Wu Yafei,Zhao Lei. Application of probiotic ecological regulation in prevention and treatment of periodontal diseases [J]. Int J Stomatol, 2020, 47(2): 131-137.
[14] Chen Yanyan,Peng Xian,Zhou Xuedong,Cheng Lei. Application of quantitative light-induced fluorescence in the clinical treatment of caries and periodontal diseases [J]. Int J Stomatol, 2019, 46(6): 699-704.
[15] Cheng Guoping,Ding Yi,Guo Shujuan. Progress in electrospun fibres as periodontal drug delivery systems [J]. Int J Stomatol, 2019, 46(5): 565-570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .