Int J Stomatol ›› 2025, Vol. 52 ›› Issue (4): 534-543.doi: 10.7518/gjkq.2025050

• Reviews • Previous Articles     Next Articles

Interactive regulation of dental stem cells and immune cells

Xueyu Gao1,2(),Yuhong Liu1,Yantao Zhao3,4,Jun Yan1()   

  1. 1.Dept. of Stomatology, Xijing 986 Hospital, Air Force Medical University, Xi’ an 710032, China
    2.School of Stomatology, Qilu Medical University, Zibo 255300, China
    3.Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
    4.Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
  • Received:2024-04-07 Revised:2024-10-28 Online:2025-07-01 Published:2025-06-20
  • Contact: Jun Yan E-mail:2685102496@qq.com;2113124856@qq.com
  • Supported by:
    Key R&D Program of Shaanxi Province(2023-YBSF-426)

Abstract:

Dental stem cells are easy to obtain with few technical and ethical constraints and have strong proliferative ability and stable morphology. Immune cells are widely distributed in the body and can regulate dental stem cells, which is beneficial for the treatment of tissue homeostasis and inflammatory diseases. Further research on their mutual regulatory mechanisms has important clinical significance. The interaction between dental stem cells and immune cells can control the biological behavior of dental stem cells, regulate the local inflammatory microenvironment, and promote tissue regeneration and inflammation treatment. However, the mechanism underlying the interaction regulation between dental stem cells and immune cells is largely unclear, and the discovered mechanisms lack clinical experimental evidence. Further exploration is needed before applying these cells to clinical treatment. This article summarizes the mutual regulatory effects and mechanisms between dental stem cells and immune cells to provide reference for their clinical applications.

Key words: mesenchymal stem cell, stomatognathic system, immune cell, immunoregulation, tissue regeneration

CLC Number: 

  • Q26

TrendMD: 

Tab 1

Mutual regulation and immunological characteristics of dental and maxillary stem cells and immune cells"

细胞种类与免疫细胞的相互调控免疫学特征
牙源性间充质干细胞牙髓干细胞

1)抑制吞噬细胞,刺激T细胞释放TGF-β抑制免疫反应,抑制细胞毒性T细胞的增殖和活化;

2)自然杀伤细胞能诱导牙髓干细胞凋亡,吞噬细胞可以调控牙髓干细胞的增殖和分化

具有较强的免疫调节能力和较低的免疫原性,与普通的免疫抑制剂相比安全性更高
牙周膜干细胞

1)可双向调节B细胞,抑制T细胞的增殖,促进中性粒细胞增殖,抑制中性粒细胞凋亡,可诱导巨噬细胞向M2型极化,抑制自然杀伤细胞,抑制CD3+T细胞的功能,抑制T细胞活力并引导T细胞向Th分化,增强免疫抑制;

2)中性粒细胞可抑制牙周膜干细胞增殖,CD3+T细胞能降低牙周膜干细胞的免疫调节能力

静息状态下牙周膜干细胞的免疫调节活性通常较低
根尖牙乳头干细胞

1)可促进促炎性T细胞向Treg细胞转化,抑制Th17分化,促进巨噬细胞极化;

2)巨噬细胞可抑制根尖牙乳头干细胞的增殖和分化,在抗炎环境中,巨噬细胞选择性极化可促进根尖牙乳头干细胞分化

具有低免疫原性,能够调节免疫微环境,促进组织再生,与免疫细胞的相互调节效果不如其他牙源性间充质干细胞
牙龈间充质干细胞

1)抑制T细胞增殖和功能,调节T细胞分化,诱导T细胞凋亡,促进Treg细胞向Th细胞转化,抑制外周血单个核细胞增殖,抑制M1型巨噬细胞活化,促进巨噬细胞向M2型转变,抑制B细胞的活化和功能;

2)巨噬细胞可抑制牙龈间充质干细胞的组织再生和免疫调节能力,巨噬细胞和树突状细胞能够提高牙龈间充质干细胞的分化能力

对先天免疫细胞和适应性免疫细胞具有较强的免疫调节作用
牙囊干细胞促进巨噬细胞向M2型极化,能够调节中性粒细胞活性,抑制淋巴细胞凋亡,可以调节各种T细胞的比例分离纯化具有一定难度,在治疗炎症性疾病和自身免疫性疾病中发挥积极作用
脱落乳牙牙髓干细胞

1)可以调节各种T细胞的比例;

2)T细胞可降低脱落乳牙牙髓干细胞的免疫原性并增强其免疫调节能力

实质是牙髓干细胞的一种,免疫排斥反应小
牙胚干细胞外泌体可以和免疫细胞相互作用具有神经保护能力
颌骨来源间充质干细胞颌骨骨髓间充质干细胞巨噬细胞可促进颌骨骨髓间充质干细胞的成骨分化与其他来源的间充质干细胞相比,对免疫细胞的调节能力较低
颌骨骨膜间充质干细胞抑制巨噬细胞向M1型极化,抑制巨噬细胞增殖,可将巨噬细胞从M1型转变为M2型,抑制树突状细胞的免疫功能
1 Hu JC, Cao Y, Xie YL, et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells follo-wing good manufacturing practice[J]. Stem Cell Res Ther, 2016, 7(1): 130.
2 Lee S, Zhang QZ, Karabucak B, et al. DPSCs from inflamed pulp modulate macrophage function via the TNF‑α/IDO axis[J]. J Dent Res, 2016, 95(11): 1274-1281.
3 李金超, 江欣, 张华, 等. 牙髓间充质干细胞对巨噬细胞极化的调节作用[J]. 口腔颌面外科杂志, 2019, 29(5): 253-259.
Li JC, Jiang X, Zhang H, et al. The regulatory effect of dental pulp stem cells on the polarization of ma-crophages[J]. China J Oral Maxillofac Surg, 2019, 29(5): 253-259.
4 Shen Z, Kuang S, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126.
5 宫晟凯, 杨晓姗, 窦庚, 等. 牙髓干细胞来源凋亡小体调节巨噬细胞极化及炎症反应[J]. 口腔疾病防治, 2022, 30(1): 12-19.
Gong SK, Yang XS, Dou G, et al. Dental pulp stem cell? Derived apoptotic bodies regulate macrophage polarization and inflammatory response[J]. J Prev Treat Stomatol Dis, 2022, 30(1): 12-19.
6 谭旭, 梁羽, 梁燕, 等. 缺氧处理牙髓干细胞外泌体诱导M2巨噬细胞极化[J]. 中国组织工程研究, 2022, 26(25): 3961-3967.
Tan X, Liang Y, Liang Y, et al. Hypoxia-treated dental pulp stem cell exosomes induce M2 macrophage polarization[J]. Chin J Tissue Eng Res, 2022, 26(25): 3961-3967.
7 Liu C, Hu F, Jiao G, et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury[J]. J Nanobiotechnology, 2022, 20(1): 65.
8 Kwack KH, Lee JM, Park SH, et al. Human dental pulp stem cells suppress alloantigen-induced immunity by stimulating T cells to release transforming growth factor beta[J]. J Endod, 2017, 43(1): 100-108.
9 Ahmadi P, Yan M, Bauche A, et al. Human dental pulp cells modulate CD8+ T cell proliferation and efficiently degrade extracellular ATP to adenosine in vitro [J]. Cell Immunol, 2022, 380: 104589.
10 Jewett A, Arasteh A, Tseng HC, et al. Strategies to rescue mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) from NK cell mediated cytotoxicity[J]. PLoS One, 2010, 5(3): e9874.
11 Neves VCM, Yianni V, Sharpe PT. Macrophage mo-dulation of dental pulp stem cell activity during tertiary dentinogenesis[J]. Sci Rep, 2020, 10(1): 20216.
12 Zhou J, Ou MH, Wei XL, et al. The role of different macrophages-derived conditioned media in dental pulp tissue regeneration[J]. Tissue Cell, 2022, 79: 101944.
13 Lyu J, Hashimoto Y, Honda Y, et al. Comparison of osteogenic potentials of dental pulp and bone marrow mesenchymal stem cells using the new cell transplantation platform, cellsaic, in a rat congenital cleft-jaw model[J]. Int J Mol Sci, 2021, 22(17): 9478.
14 Liu JY, Chen B, Bao J, et al. Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration[J]. Stem Cell Res Ther, 2019, 10(1): 320.
15 Liu OS, Xu JJ, Ding G, et al. Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1[J]. Stem Cells, 2013, 31(7): 1371-1382.
16 Um S, Kim HY, Lee JH, et al. TSG-6 secreted by mesenchymal stem cells suppresses immune reactions influenced by BMP-2 through p38 and MEK mitogen-activated protein kinase pathway[J]. Cell Tissue Res, 2017, 368(3): 551-561.
17 Shin C, Kim M, Han JA, et al. Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompa-tibility complex-like glycoprotein CD1b on dendri-tic cells[J]. J Periodontal Res, 2017, 52(1): 135-146.
18 Wang Q, Ding G, Xu X. Periodontal ligament stem cells regulate apoptosis of neutrophils[J]. Open Med (Wars), 2017, 12: 19-23.
19 Liu J, Wang H, Zhang L, et al. Periodontal ligament stem cells promote polarization of M2 macrophages[J]. J Leukoc Biol, 2022, 111(6): 1185-1197.
20 赵辛, 杨宽, 王子瑞, 等. 根吸收不同时期乳牙牙周膜干细胞通过NK细胞进行免疫调节作用的研究[J]. 口腔医学, 2020, 40(6): 517-520, 575.
Zhao X, Yang K, Wang ZR, et al. Deciduous perio-dontal ligament stem cells at different stages of root absorption through natural killer cells for immunomodulation[J]. West China J Stomatol, 2020, 40(6): 517-520, 575.
21 刘娜, 李影, 王燕一, 等. TNF-α刺激下人牙周膜干细胞对CD3+T细胞功能的影响[J]. 口腔颌面修复学杂志, 2021, 22(4): 241-245, 273.
Liu N, Li Y, Wang YY, et al. The effects of TNF-α stimulation of human periodontal stem cells on CD3+T cell function[J]. Chin J Prosthodont, 2021, 22(4): 241-245, 273.
22 Singhatanadgit W, Kitpakornsanti S, Toso M, et al. IFNγ-primed periodontal ligament cells regulate T-cell responses via IFNγ-inducible mediators and ICAM-1-mediated direct cell contact[J]. R Soc Open Sci, 2022, 9(7): 220056.
23 Đorđević IO, Kukolj T, Krstić J, et al. The inhibition of periodontal ligament stem cells osteogenic diffe-rentiation by IL-17 is mediated via MAPKs[J]. Int J Biochem Cell Biol, 2016, 71: 92-101.
24 王清. 牙周膜干细胞与中性粒细胞相互影响的研究[D]. 济南: 山东大学, 2017.
Wang Q. Study on the interaction between periodontal ligament stem cells and neutrophils[D]. Jinan: Shandong University, 2017.
25 李影. 炎症微环境下牙周膜干细胞与CD3+T细胞相互作用的机制研究[D]. 北京: 中国人民解放军医学院, 2019.
Li Y. Mechanism of interaction between periodontal ligament stem cells and CD3+T cells in inflammatory microenvironment[D]. Beijing: Chinese People’s Liberation Army Medical School, 2019.
26 王钊鑫, 尼加提 · 吐尔逊, 代慧娟, 等. 巨噬细胞炎性蛋白1α对人牙周膜干细胞生物学行为的影响[J]. 中国组织工程研究, 2023, 27(10): 1521-1527.
Wang ZX, Nijati·Tursun, Dai HJ, et al. Effect of macrophage inflammatory protein-1α on the biological behavior of human periodontal ligament stem cells[J]. Chin J Tissue Eng Res, 2023, 27(10): 1521-1527.
27 Liu G, Zhang L, Zhou X, et al. Inducing the “re-development state” of periodontal ligament cells via tuning macrophage mediated immune microenvironment[J]. J Adv Res, 2024, 60: 233-248.
28 Whiting D, Chung WO, Johnson JD, et al. Characterization of the cellular responses of dental mesenchymal stem cells to the immune system[J]. J Endod, 2018, 44(7): 1126-1131.
29 Liu XM, Liu Y, Yu S, et al. Potential immunomodulatory effects of stem cells from theapical papilla on Treg conversion in tissue regeneration for regenerative endodontic treatment[J]. Int Endodontic J, 2019, 52(12): 1758-1767.
30 Lin X, Wang H, Wu T, et al. Exosomes derived from stem cells from apical papilla promote angiogenesis via miR-126 under hypoxia[J]. Oral Dis, 2023, 29(8): 3408-3419.
31 Yu S, Chen X, Liu Y, et al. Exosomes derived from stem cells from the apical papilla alleviate inflammation in rat pulpitis by upregulating regulatory T cells[J]. Int Endod J, 2022, 55(5): 517-530.
32 Miron PO, Ben Lagha A, Azelmat J, et al. Production of TNF-α by macrophages stimulated with en-dodontic pathogens and its effect on the biological properties of stem cells of the apical papilla[J]. Clin Oral Investig, 2021, 25(9): 5307-5315.
33 Li FC, Hussein H, Magalhaes M, et al. Deciphering stem cell from apical papilla-macrophage choreography using a novel 3-dimensional organoid system[J]. J Endod, 2022, 48(8): 1063-1072.e7.
34 Jiang CM, Liu J, Zhao JY, et al. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells[J]. J Dent Res, 2015, 94(1): 69-77.
35 Chen M, Su W, Lin X, et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation[J]. Arthritis Rheum, 2013, 65(5): 1181-1193.
36 Gu YC, Shi ST. Transplantation of gingiva-derived mesenchymal stem cells ameliorates collagen-indu-ced arthritis[J]. Arthritis Res Ther, 2016, 18(1): 262.
37 Huang F, Chen MG, Chen WQ, et al. Human gingiva-derived mesenchymal stem cells inhibit xeno-graft-versus-host disease via CD39-CD73-adeno-sine and IDO signals[J]. Front Immunol, 2017, 8: 68.
38 Hong RD, Wang ZG, Sui AH, et al. Gingival mesenchymal stem cells attenuate pro-inflammatory macrophages stimulated with oxidized low-density lipoprotein and modulate lipid metabolism[J]. Arch Oral Biol, 2019, 98: 92-98.
39 Lu YS, Xu YR, Zhang SP, et al. Human gingiva-derived mesenchymal stem cells alleviate inflammatory bowel disease via IL-10 signalling-dependent mo-dulation of immune cells[J]. Scand J Immunol, 2019, 90(3): e12751.
40 Ni X, Xia Y, Zhou S, et al. Reduction in murine acute GVHD severity by human gingival tissue-derived mesenchymal stem cells via the CD39 pathways[J]. Cell Death Dis, 2019, 10(1): 13.
41 Zhao J, Chen J, Huang F, et al. Human gingiva tissue-derived MSC ameliorates immune-mediated bone marrow failure of aplastic anemia via suppression of Th1 and Th17 cells and enhancement of CD4+Foxp3+ regulatory T cells differentiation[J]. Am J Transl Res, 2019, 11(12): 7627-7643.
42 张楷, 陈柯妍, 李凯, 等. 人牙龈间充质干细胞对B细胞的作用及机制研究[J]. 器官移植, 2020, 11(2): 253-258.
Zhang K, Chen KY, Li K, et al. Effect and mechanism of human gingival mesenchymal stem cell on B cells[J]. Organ Transplant, 2020, 11(2): 253-258.
43 Dang JL, Xu ZJ, Xu AP, et al. Human gingiva-derived mesenchymal stem cells are therapeutic in lupus nephritis through targeting of CD39-CD73 sig-naling pathway[J]. J Autoimmun, 2020, 113: 102491.
44 Zhao J, Liu R, Zhu J, et al. Human gingiva-derived mesenchymal stem cells promote osteogenic diffe-rentiation through their immunosuppressive function[J]. J Oral Biosci, 2021: S1349-79(21)00092-X.
45 Giacomelli C, Natali L, Nisi M, et al. Negative effects of a high tumour necrosis factor‑α concentration on human gingival mesenchymal stem cell trophism: the use of natural compounds as modulatory agents[J]. Stem Cell Res Ther, 2018, 9(1): 135.
46 Mekhemar M, Tölle J, Hassan Y, et al. Thymoquinone-mediated modulation of toll-like receptors and pluripotency factors in gingival mesenchymal stem/progenitor cells[J]. Cells, 2022, 11(9): 1452.
47 Mekhemar M, Tölle J, Dörfer C, et al. TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells[J]. J Clin Periodontol, 2020, 47(8): 991-1005.
48 Chen X, Yang B, Tian J, et al. Dental follicle stem cells ameliorate lipopolysaccharide-induced inflammation by secreting TGF-β3 and TSP-1 to elicit macrophage M2 polarization[J]. Cell Physiol Biochem, 2018, 51(5): 2290-2308.
49 Kriebel K, Hieke C, Engelmann R, et al. Porphyromonas gingivalis peptidyl arginine deiminase can modulate neutrophil activity via infection of human dental stem cells[J]. J Innate Immun, 2018, 10(4): 264-278.
50 Genç D, Zibandeh N, Nain E, et al. Dental follicle mesenchymal stem cells down-regulate Th2-media-ted immune response in asthmatic patients mononuclear cells[J]. Clin Exp Allergy, 2018, 48(6): 663-678.
51 Genç D, Zibandeh N, Nain E, et al. IFN-γ stimulation of dental follicle mesenchymal stem cells mo-dulates immune response of CD4+ T lymphocytes in Der p1+ asthmatic patients in vitro [J]. Allergol Immunopathol, 2019, 47(5): 467-476.
52 Zibandeh N, Genç D, İnanç GN, et al. IFN-γ stimulated dental follicle mesenchymal stem cells regulate activated lymphocyte response in rheumatoid arthritis patients in vitro [J]. Turk J Med Sci, 2019, 49(6): 1779-1788.
53 Zibandeh N, Genc D, Duran Y, et al. Human dental follicle mesenchymal stem cells alleviate T cell response in inflamed tissue of Crohn’s patients[J]. Turk J Gastroenterol, 2020, 31(5): 400-409.
54 Topcu Sarica L, Zibandeh N, Genç D, et al. Immunomodulatory and tissue-preserving effects of human dental follicle stem cells in a rat cecal ligation and perforation sepsis model[J]. Arch Med Res, 2020, 51(5): 397-405.
55 Zibandeh N, Genc D, Ozgen Z, et al. Mesenchymal stem cells derived from human dental follicle modulate the aberrant immune response in atopic dermatitis[J]. Immunotherapy, 2021, 13(10): 825-840.
56 Genç D, Bulut O, Günaydin B, et al. Dental follicle mesenchymal stem cells ameliorated glandular dysfunction in Sjögren’s syndrome murine model[J]. PLoS One, 2022, 17(5): e0266137.
57 Dai YY, Ni SY, Ma K, et al. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro [J]. Stem Cell Res Ther, 2019, 10(1): 39.
58 Yang N, Liu X, Chen X, et al. Stem cells from exfoliated deciduous teeth transplantation ameliorates Sjögren’s syndrome by secreting soluble PD-L1[J]. J Leukoc Biol, 2022, 111(5): 1043-1055.
59 Junior AL, Pinheiro CCG, Tanikawa DYS, et al. Mesenchymal stem cells from human exfoliated deciduous teeth and the orbicularis oris muscle: how do they behave when exposed to a proinflammatory stimulus[J]. Stem Cells Int, 2020, 2020: 3670412.
60 Yalvaç ME, Yarat A, Mercan D, et al. Characterization of the secretome of human tooth germ stem cells (hTGSCs) reveals neuro-protection by fine-tu-ning micro-environment[J]. Brain Behav Immun, 2013, 32: 122-130.
61 王浩, 周泽楷, 隋秉东, 等. 基于单细胞测序分析颌骨和长骨间充质干细胞特性差异[J]. 中华口腔医学杂志, 2024, 59(3): 247-254.
Wang H, Zhou ZK, Sui BD, et al. Analysis of the differences in the characteristics of mesenchymal stem cells derived from jaw and long bones based on single-cell RNA-sequencing[J]. Chin J Stomatol, 2024, 59(3): 247-254.
62 Lloyd B, Tee BC, Headley C, et al. Similarities and differences between porcine mandibular and limb bone marrow mesenchymal stem cells[J]. Arch Oral Biol, 2017, 77: 1-11.
63 Pu Y, Wang M, Hong Y, et al. Adiponectin promotes human jaw bone marrow mesenchymal stem cell chemotaxis via CXCL1 and CXCL8[J]. J Cell Mol Med, 2017, 21(7): 1411-1419.
64 Cao C, Tarlé S, Kaigler D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells[J]. Stem Cell Res Ther, 2020, 11(1): 102.
[1] Tianyuan Li,Tongxin Zhu,Qing Liu,Yingchun Dong,Bin Chen. Clinical efficacy of mesenchymal stem cells on periodontal regeneration: a systematic review and meta-analysis [J]. Int J Stomatol, 2025, 52(3): 296-307.
[2] Jing Li,Jian Kang. Use of regenerated materials in periodontal minimally invasive surgery [J]. Int J Stomatol, 2025, 52(2): 161-168.
[3] Hui Lu,Yexin Zheng,Wei Zhao. Effects and mechanism of exosomes derived from dental mesenchymal stem cells on dental pulp regeneration [J]. Int J Stomatol, 2024, 51(4): 467-474.
[4] San Chen,Runze Yang,Jiayuan Wu. Research progress on the role of exosomes derived from lipopolysaccharides and hypoxic preconditioning in the repair and regeneration of tissues [J]. Int J Stomatol, 2024, 51(3): 256-264.
[5] Weijie Zhang, Xianghui Liu, Yu’e Yang. Recent advances in regulation of congenitally absent teeth by homeobox genes [J]. Int J Stomatol, 2024, 51(3): 374-380.
[6] Wang Jiaxi,Mingyue Lü,Yuan Quan. Research progress on sticky bone in oral tissue regeneration [J]. Int J Stomatol, 2023, 50(5): 594-602.
[7] Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478.
[8] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[9] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[10] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[11] Li Pei,Lin Ling,Zhao Wei.. Research progress on the stem cells from human exfoliated deciduous teeth in the regeneration and repair of oral tissue [J]. Int J Stomatol, 2022, 49(4): 483-488.
[12] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[13] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[14] Zhao Wenjun,Chen Yu. Research progress on periodontal functional gradient membrane for guided tissue/bone regeneration [J]. Int J Stomatol, 2021, 48(4): 391-397.
[15] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .