Int J Stomatol ›› 2024, Vol. 51 ›› Issue (4): 467-474.doi: 10.7518/gjkq.2024064

• Reviews • Previous Articles    

Effects and mechanism of exosomes derived from dental mesenchymal stem cells on dental pulp regeneration

Hui Lu(),Yexin Zheng,Wei Zhao()   

  1. Dept. of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, ChinaSupported byFoundation:Natural Science Foundation of Guangdong Province (2023A1515012554 )
  • Received:2023-10-26 Revised:2024-02-26 Online:2024-07-01 Published:2024-06-24
  • Contact: Wei Zhao E-mail:luhui7@mail2.sysu.edu.cn;zhaowei3@mail.sysu.edu.cn

Abstract:

Pulp regeneration is a new strategy for pulp necrosis treatment based on tissue engineering. Seed cells combined with scaffolds and growth factors are used to regenerate dentin, blood vessels, and nerves. As extracellular vesicles with a diameter of approximately 30~150 nm, exosomes play an important role in the transmission of regulatory information between cells. In recent years, exosomes derived from dental mesenchymal stem cells have attracted attention because of their great potential in pulp regeneration. In this article, the species and culture environment of exosomes derived from dental mesenchymal stem cells were introduced. The effect and mechanism of exosomes derived from dental mesenchymal stem cells in regulating odontogenic differentiation, angiogenesis, nerve regeneration, and osteoblastic differentiation were also reviewed.

Key words: exosome, pulp regeneration, dental mesenchymal stem cells

CLC Number: 

  • R781.3

TrendMD: 
1 Ivica A, Zehnder M, Weber FE. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in regenerative endodontics[J]. Eur Cell Mater, 2021, 41: 233-244.
2 陈彦, 杨雪婷, 马悦, 等. 基于外泌体的牙髓再生策略[J]. 中华口腔医学杂志, 2021, 56(7): 709-714.
Chen Y, Yang XT, Ma Y, et al. Exosomes-based strategies for dental pulp regeneration[J]. Chin J Stomatol, 2021, 56(7):709-714.
3 Lai HB, Li JQ, Kou XX, et al. Extracellular vesicles for dental pulp and periodontal regeneration[J]. Pharmaceutics, 2023, 15(1): 282.
4 Marote A, Teixeira FG, Mendes-Pinheiro B, et al. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential[J]. Front Pharmacol, 2016, 7: 231.
5 Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750.
6 中国抗癌协会肿瘤标志专业委员会外泌体技术专家委员会. 外泌体研究、转化和临床应用专家共识[J]. 转化医学杂志, 2018, 7(6): 321-325.
Committee of Exosome Society of Tumor Markers, Chinese Anti-Cancer Association. Consensus statement on exosomes in translational research and cli-nical practice[J]. Transl Med J, 2018, 7(6): 321-325.
7 Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches[J]. J Extracell Vesicles, 2024, 13(2): e12404.
8 Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
9 Jing H, He XM, Zheng JH. Exosomes and regenerative medicine: state of the art and perspectives[J]. Transl Res, 2018, 196: 1-16.
10 Huang CC, Narayanan R, Alapati S, et al. Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration[J]. Biomaterials, 2016, 111: 103-115.
11 Liu S, Wu X, Chandra S, et al. Extracellular vesicles: emerging tools as therapeutic agent carriers[J]. Acta Pharm Sin B, 2022, 12(10): 3822-3842.
12 Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo [J]. Proc Natl Acad Sci USA, 2000, 97(25): 13625-13630.
13 Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. PNAS, 2003, 100(10): 5807-5812.
14 Cantore S, Ballini A, de Vito D, et al. Characterization of human apical papilla-derived stem cells[J]. J Biol Regul Homeost Agents, 2017, 31(4): 901-910.
15 Zhang SC, Yang Y, Jia SX, et al. Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue[J]. Theranostics, 2020, 10(13): 5914-5931.
16 Hu XL, Zhong YQ, Kong YY, et al. Lineage-speci-fic exosomes promote the odontogenic differentiation of human dental pulp stem cells (DPSCs) through TGFβ1/smads signaling pathway via transfer of microRNAs[J]. Stem Cell Res Ther, 2019, 10(1): 170.
17 Xie LK, Guan Z, Zhang MZ, et al. Exosomal circLPAR1 promoted osteogenic differentiation of homotypic dental pulp stem cells by competitively binding to hsa-miR-31[J]. Biomed Res Int, 2020, 2020: 6319395.
18 Huang XY, Qiu W, Pan YH, et al. Exosomes from LPS-stimulated hDPSCs activated the angiogenic potential of HUVECs in vitro [J]. Stem Cells Int, 2021, 2021: 6685307.
19 Li BY, Xian XH, Lin XW, et al. Hypoxia alters the proteome profile and enhances the angiogenic potential of dental pulp stem cell-derived exosomes[J]. Biomolecules, 2022, 12(4): 575.
20 Tian J, Chen WY, Xiong YH, et al. Small extracellular vesicles derived from hypoxic preconditioned dental pulp stem cells ameliorate inflammatory os-teolysis by modulating macrophage polarization and osteoclastogenesis[J]. Bioact Mater, 2023, 22: 326-342.
21 Guo H, Li B, Wu ML, et al. Odontogenesis-related developmental microenvironment facilitates decid-uous dental pulp stem cell aggregates to revitalize an avulsed tooth[J]. Biomaterials, 2021, 279: 121223.
22 Wu ML, Liu XM, Li ZH, et al. SHED aggregate exosomes shuttled miR-26a promote angiogenesis in pulp regeneration via TGF-β/SMAD2/3 signalling[J]. Cell Prolif, 2021, 54(7): e13074.
23 Chen Y, Ma Y, Yang XT, et al. The application of pulp tissue derived-exosomes in pulp regeneration: a novel cell-homing approach[J]. Int J Nanomedicine, 2022, 17: 465-476.
24 陈婷, 李心竹, 徐稳安. 外泌体和细胞因子促进牙髓血管生成的作用与调控机制[J]. 中国组织工程研究, 2020, 24(14): 2263-2270.
Chen T, Li XZ, Xu WA. Role of angiogenesis in dental pulp regeneration: exosomes and angiogenic factors[J]. Chin J Tissue Eng Res, 2020, 24(14): 2263-2270.
25 Rosa V, Zhang Z, Grande RH, et al. Dental pulp tissue engineering in full-length human root canals[J]. J Dent Res, 2013, 92(11): 970-975.
26 李佩, 林凌, 赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
Li P, Lin L, Zhao W. Research progress on the stem cells from human exfoliated deciduous teeth in the regeneration and repair of oral tissue[J]. Int J Stomatol, 2022, 49(4): 483-488.
27 Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth[J]. Sci Transl Med, 2018, 10(455): eaaf3227.
28 Yu S, Chen H, Gao B. Potential therapeutic effects of exosomes in regenerative endodontics[J]. Arch Oral Biol, 2020, 120: 104946.
29 Zhuang XY, Ji LL, Jiang H, et al. Exosomes derived from stem cells from the apical papilla promote dentine-pulp complex regeneration by inducing specific dentinogenesis[J]. Stem Cells Int, 2020, 2020: 5816723.
30 Yang S, Liu Q, Chen S, et al. Extracellular vesicles delivering nuclear factor Ⅰ/C for hard tissue engineering: treatment of apical periodontitis and dentin regeneration[J]. J Tissue Eng, 2022, 13: 20417314-221084095.
31 Ribeiro MF, Zhu HY, Millard RW, et al. Exosomes function in pro- and anti-angiogenesis[J]. Curr Angiogenes, 2013, 2(1): 54-59.
32 柳鑫, 肖燕, 江川, 等. 牙髓干细胞来源外泌体诱导内皮细胞血管生成能力的研究[J]. 牙体牙髓牙周病学杂志, 2018, 28(4): 187-196.
Liu X, Xiao Y, Jiang C, et al. Exosomes from dental pulp stem cells enhance the angiogenesis of endothelial cells[J]. China J Conserv Dent, 2018, 28(4): 187-196.
33 Xian XH, Gong QM, Li C, et al. Exosomes with highly angiogenic potential for possible use in pulp regeneration[J]. J Endod, 2018, 44(5): 751-758.
34 Wu JY, Chen LL, Wang RF, et al. Exosomes secre-ted by stem cells from human exfoliated deciduous teeth promote alveolar bone defect repair through the regulation of angiogenesis and osteogenesis[J]. ACS Biomater Sci Eng, 2019, 5(7): 3561-3571.
35 Liu Y, Zhuang XY, Yu S, et al. Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization[J]. Stem Cell Res Ther, 2021, 12(1): 76.
36 Liu PP, Zhang Q, Mi J, et al. Exosomes derived from stem cells of human deciduous exfoliated teeth inhibit angiogenesis in vivo and in vitro via the transfer of miR-100-5p and miR-1246[J]. Stem Cell Res Ther, 2022, 13(1): 89.
37 Zhou H, Li X, Yin Y, et al. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth[J]. Stem Cell Res Ther, 2020, 11(1): 110.
38 Liu PP, Qin LH, Liu C, et al. Exosomes derived from hypoxia-conditioned stem cells of human deciduous exfoliated teeth enhance angiogenesis via the transfer of let-7f-5p and miR-210-3p[J]. Front Cell Dev Biol, 2022, 10: 879877.
39 Gonzalez-King H, García NA, Ontoria-Oviedo I, et al. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes[J]. Stem Cells, 2017, 35(7): 1747-1759.
40 Stanko P, Altanerova U, Jakubechova J, et al. Dental mesenchymal stem/stromal cells and their exosomes[J]. Stem Cells Int, 2018, 2018: 8973613.
41 Nuti N, Corallo C, Chan BM, et al. Multipotent differentiation of human dental pulp stem cells: a literature review[J]. Stem Cell Rev Rep, 2016, 12(5): 511-523.
42 Terunuma A, Yoshioka Y, Sekine T, et al. Extracellular vesicles from mesenchymal stem cells of dental pulp and adipose tissue display distinct transcriptomic characteristics suggestive of potential therapeutic targets[J]. J Stem Cells Regen Med, 2021, 17(2): 56-60.
43 Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, et al. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis[J]. Cytotherapy, 2015, 17(7): 932-939.
44 Guo J, Zhou F, Liu Z, et al. Exosome-shuttled mitochondrial transcription factor A mRNA promotes the osteogenesis of dental pulp stem cells through mitochondrial oxidative phosphorylation activation[J]. Cell Prolif, 2022, 55(12): e13324.
45 Swanson WB, Zhang Z, Xiu KM, et al. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation[J]. Acta Biomater, 2020, 118: 215-232.
46 Lee AE, Choi JG, Shi SH, et al. DPSC-derived extracellular vesicles promote rat jawbone regeneration[J]. J Dent Res, 2023, 102(3): 313-321.
47 Shimizu Y, Takeda-Kawaguchi T, Kuroda I, et al. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis[J]. J Periodontal Res, 2022, 57(1): 162-172.
48 Wei JZ, Song YQ, Du ZH, et al. Exosomes derived from human exfoliated deciduous teeth ameliorate adult bone loss in mice through promoting osteoge-nesis[J]. J Mol Histol, 2020, 51(4): 455-466.
49 Li L, Ge JP. Exosome‑derived lncRNA‑Ankrd26 promotes dental pulp restoration by regulating miR‑150‑TLR4 signaling[J]. Mol Med Rep, 2022, 25(5): 152.
50 Wang MH, Li J, Ye YY, et al. SHED-derived exosomes improve the repair capacity and osteogenesis potential of hPDLCs[J]. Oral Dis, 2023, 29(4): 1692-1705.
51 Sonoda S, Murata S, Nishida K, et al. Extracellular vesicles from deciduous pulp stem cells recover bone loss by regulating telomerase activity in an osteoporosis mouse model[J]. Stem Cell Res Ther, 2020, 11(1): 296.
52 Wang MH, Li J, Ye YY, et al. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro [J]. Differentiation, 2020, 111: 1-11.
[1] San Chen,Runze Yang,Jiayuan Wu. Research progress on the role of exosomes derived from lipopolysaccharides and hypoxic preconditioning in the repair and regeneration of tissues [J]. Int J Stomatol, 2024, 51(3): 256-264.
[2] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[3] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[4] Qin Siwen,Liao Li.. Strategies of vascularization in dental pulp regeneration [J]. Int J Stomatol, 2022, 49(3): 272-282.
[5] Zhou Yi,Zhao Yuming. Research progress on various dental pulp regeneration scaffolds [J]. Int J Stomatol, 2022, 49(1): 19-26.
[6] Ai Xiaoqing,Dou Lei,Qiao Xin,Yang Deqin. MicroRNA profile of exosomes derived from dental pulp stromal cells under three-dimensional culture condition [J]. Int J Stomatol, 2022, 49(1): 27-36.
[7] Jiang Yulei,Xia Bin,Rao Nanquan,Yang Hefeng,Xu Biao. Exosomes mediate the malignant progression of oral squamous cell carcinoma and its application in diagnosis and treatment [J]. Int J Stomatol, 2021, 48(6): 711-717.
[8] Cao Chunling,Han Bing,Wang Xiaoyan. Research progress on hydrogels for pulp regeneration [J]. Int J Stomatol, 2021, 48(2): 192-197.
[9] Wu Xiaonan,Ma Ning,Hou Jianxia. Research progress of exosomes derived from different stem cells in periodontal regeneration [J]. Int J Stomatol, 2020, 47(2): 146-151.
[10] Longbiao Li,Chenglin Wang,Ling Ye. Research progress on natural scaffold in the regeneration of dental pulp tissue engineering [J]. Inter J Stomatol, 2018, 45(6): 666-672.
[11] Wu Jiameng, Wang Xiaoying.. Research progress on exosomes and oral diseases [J]. Inter J Stomatol, 2017, 44(3): 336-339.
[12] Yang Maobin1, Zeng Qian2. Regenerative endodontics: a new treatment modality for pulp regeneration [J]. Inter J Stomatol, 2016, 43(5): 495-499.
[13] Li Zhou, Xu Qing’an. Stem cells and scaffolds in dental pulp regeneration and revascularization [J]. Inter J Stomatol, 2016, 43(3): 298-302.
[14] He Lu, Guo Jun, Yang Jian. Research progress on dental pulp tissue regeneration based on revascularization and tooth tissue engineering [J]. Inter J Stomatol, 2015, 42(4): 485-491.
[15] Li Jin1, Liao Guiqing2, Chen Jufeng1, Liu Haichao2, Su Yuxiong2, Feng Lianqiang3, Luo Xiaofeng4.. Isolation and identification of exosomes secreted from cell line Tca8113 in tongue cancer [J]. Inter J Stomatol, 2014, 41(1): 23-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!