Int J Stomatol ›› 2025, Vol. 52 ›› Issue (4): 526-533.doi: 10.7518/gjkq.2025070

• Reviews • Previous Articles     Next Articles

Application of electrospun nanofibers in maxillofacial tissue repair

Qihang Huang1(),Hang Wang2,Yaozhong Wang2,Dechao Li1,2()   

  1. 1.School of Stomatology, Shandong Second Medical University, Weifang 261053, China
    2.Dept. of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
  • Received:2024-10-21 Revised:2025-04-02 Online:2025-07-01 Published:2025-06-20
  • Contact: Dechao Li E-mail:huangqihang1999@163.com;dechaoli2004@163.com
  • Supported by:
    Qingdao Clinical Research Center for Oral Diseases(22-3-7-lczx-7-nsh);Shandong Provincial Key Medical and Health Discipline of Oral Medicine (2024-2026);Qingdao Key Health Discipline Development Fund (2022-2024);Shandong Provincial Natural Science Foundation(ZR2024QH484);Qingdao Natural Science Foundation(22-4-4-zrjj-120-jch)

Abstract:

The incidence of oral diseases is high, and its treatment often requires the application of new materials. Cha-racterized by their unique structural properties and exceptional biological functions, electrospinning nanofibers (ENFs) have shown significant application potential in oral medicine, particularly in maxillofacial tissue repair and tooth regeneration. This work reviews the research progress of ENFs in stomatology, summarizing their preparation process and characteristics, categorizing and elaborates their clinical applications in oral diseases, and outlining their challenges and development prospects in the treatment of oral diseases. The findings provide reference for basic research and clinical application of ENFs against oral diseases.

Key words: electrospinning, nanofiber, oral disease, tissue engineering, drug delivery

CLC Number: 

  • R62

TrendMD: 

Fig 1

Main electrospinning devices and structures"

1 Jain N, Dutt U, Radenkov I, et al. WHO’s global oral health status report 2022: actions, discussion and implementation[J]. Oral Dis, 2024, 30(2): 73-79.
2 Cui H, You Y, Cheng GW, et al. Advanced materials and technologies for oral diseases[J]. Sci Technol Adv Mater, 2023, 24(1): 2156257.
3 Chen ZG, Wang PW, Wei B, et al. Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell[J]. Acta Biomater, 2010, 6(2): 372-382.
4 Nie J, Zhang SM, Wu P, et al. Electrospinning with lyophilized platelet-rich fibrin has the potential to enhance the proliferation and osteogenesis of MC3T3-E1 cells[J]. Front Bioeng Biotechnol, 2020, 8: 595579.
5 Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films[J]. Adv Mater, 2004, 16(4): 361-366.
6 Wang CY, Wang J, Zeng LD, et al. Fabrication of electrospun polymer nanofibers with diverse morphologies[J]. Molecules, 2019, 24(5): 834.
7 Nauman S, Lubineau G, Alharbi HF. Post proces-sing strategies for the enhancement of mechanical properties of ENMs (electrospun nanofibrous membranes): a review[J]. Membranes (Basel), 2021, 11(1): 39.
8 Wei LQ, Wang SS, Shan MQ, et al. Conductive fibers for biomedical applications[J]. Bioact Mater, 2023, 22: 343-364.
9 Zhang CL, Yu SH. Nanoparticles meet electrospinning: recent advances and future prospects[J]. Chem Soc Rev, 2014, 43(13): 4423-4448.
10 Santos E, Hernández RM, Pedraz JL, et al. Novel advances in the design of three-dimensional bio-scaffolds to control cell fate: translation from 2D to 3D[J]. Trends Biotechnol, 2012, 30(6): 331-341.
11 Chen SX, John JV, McCarthy A, et al. Fast transformation of 2D nanofiber membranes into pre-molded 3D scaffolds with biomimetic and oriented porous structure for biomedical applications[J]. Appl Phys Rev, 2020, 7(2): 021406.
12 Chen SX, John JV, McCarthy A, et al. New forms of electrospun nanofiber materials for biomedical applications[J]. J Mater Chem B, 2020, 8(17): 3733-3746.
13 Xie XR, Li D, Chen YJ, et al. Conjugate electrospun 3D gelatin nanofiber sponge for rapid hemostasis[J]. Adv Healthc Mater, 2021, 10(20): e2100918.
14 Chen YJ, Shafiq M, Liu MY, et al. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds[J]. Bioact Mater, 2020, 5(4): 963-979.
15 Jiang J, Carlson MA, Teusink MJ, et al. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique[J]. ACS Biomater Sci Eng, 2015, 1(10): 991-1001.
16 Xue JJ, Xie JW, Liu WY, et al. Electrospun nanofibers: new concepts, materials, and applications[J]. Acc Chem Res, 2017, 50(8): 1976-1987.
17 Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: a review[J]. J Control Release, 2021, 334: 463-484.
18 Guo S, Dipietro LA. Factors affecting wound hea-ling[J]. J Dent Res, 2010, 89(3): 219-229.
19 Mirhaj M, Tavakoli M, Varshosaz J, et al. Preparation of a biomimetic bi-layer chitosan wound dres-sing composed of A-PRF/sponge layer and L-arginine/nanofiber[J]. Carbohydr Polym, 2022, 292: 119648.
20 Schäfer S, Smeets R, Köpf M, et al. Antibacterial properties of functionalized silk fibroin and sericin membranes for wound healing applications in oral and maxillofacial surgery[J]. Biomater Adv, 2022, 135: 212740.
21 Ekambaram R, Paraman V, Raja L, et al. Design and development of electrospun SPEEK incorporated with aminated zirconia and curcumin nanofibers for periodontal regeneration[J]. J Mech Behav Biomed Mater, 2021, 123: 104796.
22 Elshazly N, Khalil A, Saad M, et al. Efficacy of bioactive glass nanofibers tested for oral mucosal regeneration in rabbits with induced diabetes[J]. Materials (Basel), 2020, 13(11): 2603.
23 Grabowski G, Cornett CA. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies[J]. J Am Acad Orthop Surg, 2013, 21(1): 51-60.
24 Yan X, Yao HY, Luo J, et al. Functionalization of electrospun nanofiber for bone tissue engineering[J]. Polymers (Basel), 2022, 14(14): 2940.
25 Wang B, Feng CM, Liu YM, et al. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: a review[J]. Jpn Dent Sci Rev, 2022, 58: 233-248.
26 Yao YT, Jia XS, Chen SM, et al. Extensive cell see-ding densities adaptable SF/PGA electrospinning scaffolds for bone tissue engineering[J]. Biomater Adv, 2022, 137: 212834.
27 Al-Bishari AM, Al-Shaaobi BA, Al-Bishari AA, et al. Vitamin D and curcumin-loaded PCL nanofibrous for engineering osteogenesis and immunomodulatory scaffold[J]. Front Bioeng Biotechnol, 2022, 10: 975431.
28 Song HL, Zhang YT, Zhang ZH, et al. Hydroxyapatite/NELL-1 nanoparticles electrospun fibers for osteoinduction in bone tissue engineering application[J]. Int J Nanomedicine, 2021, 16: 4321-4332.
29 Zhu YW, Zhou JP, Dai BY, et al. A bilayer membrane doped with struvite nanowires for guided bone regeneration[J]. Adv Healthc Mater, 2022, 11(18): e2201679.
30 Ren LL, Gong P, Gao XH, et al. Metal-phenolic networks acted as a novel bio-filler of a barrier membrane to improve guided bone regeneration via manipulating osteoimmunomodulation[J]. J Mater Chem B, 2022, 10(48): 10128-10138.
31 Xing DL, Zuo W, Chen JH, et al. Spatial delivery of triple functional nanoparticles via an extracellular matrix-mimicking coaxial scaffold synergistically enhancing bone regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(33): 37380-37395.
32 He Y, Tian M, Li XL, et al. A hierarchical-structured mineralized nanofiber scaffold with osteoimmunomodulatory and osteoinductive functions for enhanced alveolar bone regeneration[J]. Adv Healthc Mater, 2022, 11(3): e2102236.
33 Ho MH, Huang KY, Tu CC, et al. Functionally gra-ded membrane deposited with PDLLA nanofibers encapsulating doxycycline and enamel matrix deri-vatives-loaded chitosan nanospheres for alveolar ridge regeneration[J]. Int J Biol Macromol, 2022, 203: 333-341.
34 Chen YF, Zhang CY, Zhang SY, et al. Novel advan-ces in strategies and applications of artificial articular cartilage[J]. Front Bioeng Biotechnol, 2022, 10: 987999.
35 Gan ZQ, Zhao YF, Wu YK, et al. Three-dimensio-nal, biomimetic electrospun scaffolds reinforced with carbon nanotubes for temporomandibular joint disc regeneration[J]. Acta Biomater, 2022, 147: 221-234.
36 de Souza Araújo IJ, Ferreira JA, Daghrery A, et al. Self-assembling peptide-laden electrospun scaffolds for guided mineralized tissue regeneration[J]. Dent Mater, 2022, 38(11): 1749-1762.
37 Liu CZ, Hao ZC, Yang T, et al. Anti-acid biomime-tic dentine remineralization using inorganic silica stabilized nanoparticles distributed electronspun nanofibrous mats[J]. Int J Nanomedicine, 2021, 16: 8251-8264.
38 Pidhatika B, Widyaya VT, Nalam PC, et al. Surface modifications of high-performance polymer polyetheretherketone (PEEK) to improve its biological performance in dentistry[J]. Polymers (Basel), 2022, 14(24): 5526.
39 Amiri P, Talebi Z, Semnani D, et al. Improved performance of Bis-GMA dental composites reinforced with surface-modified PAN nanofibers[J]. J Mater Sci Mater Med, 2021, 32(7): 82.
40 Peres BU, Manso AP, Carvalho LD, et al. Experimental composites of polyacrilonitrile-electrospun nanofibers containing nanocrystal cellulose[J]. Dent Mater, 2019, 35(11): e286-e297.
41 Ribeiro JS, Münchow EA, Bordini EAF, et al. Engineering of injectable antibiotic-laden fibrous mi-croparticles gelatin methacryloyl hydrogel for en-dodontic infection ablation[J]. Int J Mol Sci, 2022, 23(2): 971.
42 Terranova L, Louvrier A, Hébraud A, et al. Highly structured 3D electrospun conical scaffold: a tool for dental pulp regeneration[J]. ACS Biomater Sci Eng, 2021, 7(12): 5775-5787.
43 Leite ML, de Oliveira Ribeiro RA, Soares DG, et al. Poly(caprolactone)‑aligned nanofibers associated with fibronectin-loaded collagen hydrogel as a potent bioactive scaffold for cell-free regenerative en-dodontics[J]. Int Endod J, 2022, 55(12): 1359-1371.
44 Leite ML, Soares DG, Anovazzi G, et al. Development of fibronectin-loaded nanofiber scaffolds for guided pulp tissue regeneration[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(9): 1244-1258.
45 Liu ZQ, Shang LL, Ge SH. Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling[J]. J Dent Sci, 2021, 16(3): 937-947.
46 Zhao P, Chen W, Feng ZB, et al. Electrospun nanofibers for periodontal treatment: a recent progress[J]. Int J Nanomedicine, 2022, 17: 4137-4162.
47 Xu XW, Zhou Y, Zheng K, et al. 3D polycaprolactone/gelatin-oriented electrospun scaffolds promote periodontal regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(41): 46145-46160.
48 Abdalla HB, Marchioro RR, Galvão KEA, et al. Polycaprolactone scaffolds as a biomaterial for cementoblast delivery: an in vitro study[J]. J Periodontal Res, 2022, 57(5): 1014-1023.
49 Zarubova J, Hasani-Sadrabadi MM, Dashtimogha-dam E, et al. Engineered delivery of dental stem-cell-derived extracellular vesicles for periodontal tissue regeneration[J]. Adv Healthc Mater, 2022, 11(12): e2102593.
50 Ferreira JA, Kantorski KZ, Dubey N, et al. Persona-lized and defect-specific antibiotic-laden scaffolds for periodontal infection ablation[J]. ACS Appl Mater Interfaces, 2021, 13(42): 49642-49657.
51 He Z, Liu SB, Li ZM, et al. Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models[J]. Mater Today Bio, 2022, 16: 100438.
52 Shahi RG, Albuquerque MP, Münchow EA, et al. Novel bioactive tetracycline-containing electrospun polymer fibers as a potential antibacterial dental implant coating[J]. Odontology, 2017, 105(3): 354-363.
53 Mathur A, Kharbanda OP, Koul V, et al. Fabrication and evaluation of antimicrobial biomimetic nanofiber coating for improved dental implant bioseal: an in vitro study[J]. J Periodontol, 2022, 93(10): 1578-1588.
54 Cochis A, Ferraris S, Sorrentino R, et al. Silver-doped keratin nanofibers preserve a titanium surface from biofilm contamination and favor soft-tissue healing[J]. J Mater Chem B, 2017, 5(42): 8366-8377.
55 Chowdhury MA, Hossain N, Shahid MA, et al. Development of SiC-TiO2-Graphene neem extracted antimicrobial nano membrane for enhancement of multiphysical properties and future prospect in dental implant applications[J]. Heliyon, 2022, 8(9): e10603.
56 Chen ZJ, Lv JC, Wang ZG, et al. Polycaprolactone electrospun nanofiber membrane with sustained chlorohexidine release capability against oral pathogens[J]. J Funct Biomater, 2022, 13(4): 280.
57 Andrei V, Fiț NI, Matei I, et al. In vitro antimicrobial effect of novel electrospun polylactic acid/hydroxyapatite nanofibres loaded with doxycycline[J]. Materials (Basel), 2022, 15(18): 6225.
58 Zhou YQ, Wang ML, Yan C, et al. Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers[J]. Biomolecules, 2022, 12(9): 1254.
59 Edmans JG, Ollington B, Colley HE, et al. Electrospun patch delivery of anti-TNFα F(ab) for the treatment of inflammatory oral mucosal disease[J]. J Control Release, 2022, 350: 146-157.
60 Teno J, Pardo-Figuerez M, Figueroa-Lopez KJ, et al. Development of multilayer ciprofloxacin hydrochloride electrospun patches for buccal drug deli-very[J]. J Funct Biomater, 2022, 13(4): 170.
61 Li C, Wang DD, Zhou Y, et al. Antifungal activity of camelus-derived LFA-LFC chimeric peptide gelatin film and effect on oral bacterial biofilm[J]. Appl Biochem Biotechnol, 2023, 195(5): 2993-3010.
62 Clitherow KH, Binaljadm TM, Hansen J, et al. Medium-chain fatty acids released from polymeric electrospun patches inhibit Candida albicans growth and reduce the biofilm viability[J]. ACS Biomater Sci Eng, 2020, 6(7): 4087-4095.
63 Nam S, Lee SY, Cho HJ. Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma[J]. J Colloid Interface Sci, 2017, 508: 112-120.
64 Longo R, Raimondo M, Vertuccio L, et al. Bottom-up strategy to forecast the drug location and release kinetics in antitumoral electrospun drug delivery systems[J]. Int J Mol Sci, 2023, 24(2): 1507.
65 Nam S, Lee JJ, Lee SY, et al. Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy[J]. Int J Pharm, 2017, 526(1/2): 225-234.
66 Ravichandran S, Radhakrishnan J. Anticancer efficacy of lupeol incorporated electrospun Polycaprolactone/gelatin nanocomposite nanofibrous mats[J]. Nanotechnology, 2022, 33(29). doi: 10.1088/1361-6528/ac667b .
doi: 10.1088/1361-6528/ac667b
67 Ravichandran S, Jegathaprathaban R, Radhakrishnan J, et al. An investigation of electrospun Clerodendrum phlomidis leaves extract infused polycaprolactone nanofiber for in vitro biological application[J]. Bioinorg Chem Appl, 2022, 2022: 2335443.
68 Liu YN, Xu YJ, Zhang XP, et al. On-demand release of fucoidan from a multilayered nanofiber patch for the killing of oral squamous cancer cells and promotion of epithelial regeneration[J]. J Funct Biomater, 2022, 13(4): 167.
[1] Nanyang Zhao,Juanjuan Wu,Zhou Zhou,Xinyue Chen,Xutong Zhang,Yifei Xu,Taiming Dai. Oral health status of 12-year-old children in the areas and non-intervention areas of comprehensive intervention project for pediatric oral diseases in Guizhou Province [J]. Int J Stomatol, 2025, 52(4): 484-489.
[2] Xiuxiang Wei,Hao Li. Research progress of novel tissue adhesives in stomatology [J]. Int J Stomatol, 2025, 52(2): 154-160.
[3] Qipei Luo,Xinchun Zhang. Smart responsive hydrogels and their application in controlled drug release [J]. Int J Stomatol, 2025, 52(1): 123-132.
[4] Rui Zhang,Ting Hao,Lü Wen,Shuangshuang Ren,Yu Liu,Wenlei Wu,Weibin Sun. Antibacterial property of berberine-loaded coaxial electrospun membranes against periodontal pathogens and biofilms [J]. Int J Stomatol, 2024, 51(5): 596-607.
[5] Xingyue Wen, Junyu Zhao, Chongjun Zhao, Guixin Wang, Ruijie Huang. Research progress on chitosan in periodontal disease treatment [J]. Int J Stomatol, 2024, 51(4): 416-424.
[6] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[7] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[8] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[9] Yang Qianjuan,Song Zhixin,Fang Shishu,Gu Zexu,Jin Zuolin,Liu Qian. New advances in oral diseases based on salivary metabolomics [J]. Int J Stomatol, 2023, 50(3): 321-328.
[10] Wu Jiaxin,Cheng Xingqun,Wu Hongkun.. Clinical application and research progress on hyaluronic acid in the repair of papillary height loss [J]. Int J Stomatol, 2023, 50(3): 347-352.
[11] Chen Yifei,Zhang Binjing,Feng Shuqi,Xu Rui,Yang Shuxian,Li Yuqing. Effects of flavonoids on oral microorganisms and its mechanism [J]. Int J Stomatol, 2023, 50(2): 210-216.
[12] Yang Mengyao,Gao Xianling,Deng Shuli. Application of electrospun nanofibers in periodontal regeneration [J]. Int J Stomatol, 2023, 50(1): 10-18.
[13] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[14] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[15] Liu Qianxi,Wu Jiayi,Ren Biao,Huang Ruijie. Research progress on the interactions between Enterococcus faecalis and other oral microorganisms [J]. Int J Stomatol, 2022, 49(3): 290-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .