Int J Stomatol ›› 2025, Vol. 52 ›› Issue (4): 514-525.doi: 10.7518/gjkq.2025058
• Reviews • Previous Articles Next Articles
Shuyu Zhu1(),Jing Zhou2,Zhigang Xie1(
)
CLC Number:
1 | Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities[J]. Nat Rev Immunol, 2021, 21(7): 426-440. |
2 | Jerjes W, Upile T, Petrie A, et al. Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients[J]. Head Neck Oncol, 2010, 2: 9. |
3 | Darwin D, Castelino RL, Babu GS, et al. Oral equilibrium in cachexia[J]. Asia Pac J Oncol Nurs, 2021, 8(5): 519-526. |
4 | Kim JM, Lin CJ, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9): 2073. |
5 | Yahara Y, Nguyen T, Ishikawa K, et al. The origins and roles of osteoclasts in bone development, homeostasis and repair[J]. Development, 2022, 149(8): dev199908. |
6 | Ambrosi TH, Marecic O, McArdle A, et al. Aged skeletal stem cells generate an inflammatory dege-nerative niche[J]. Nature, 2021, 597(7875): 256-262. |
7 | Cawley KM, Bustamante-Gomez NC, Guha AG, et al. Local production of osteoprotegerin by osteoblasts suppresses bone resorption[J]. Cell Rep, 2020, 32(10): 108052. |
8 | Zhu GY, Zhang TX, Chen M, et al. Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds[J]. Bioact Mater, 2021, 6(11): 4110-4140. |
9 | Arron JR, Choi Y. Bone versus immune system[J]. Nature, 2000, 408(6812): 535-536. |
10 | Zhu XZ, Huang HY, Zhao L. PAMPs and DAMPs as the bridge between periodontitis and atherosclerosis: the potential therapeutic targets[J]. Front Cell Dev Biol, 2022, 10: 856118. |
11 | Merle NS, Church SE, Fremeaux-Bacchi V, et al. Complement system part Ⅰ-molecular mechanisms of activation and regulation[J]. Front Immunol, 2015, 6: 262. |
12 | Sansores-España LD, Melgar-Rodríguez S, Vernal R, et al. Neutrophil N1 and N2 subsets and their possible association with periodontitis: a scoping review[J]. Int J Mol Sci, 2022, 23(20): 12068. |
13 | Jiang QS, Zhao YX, Shui YS, et al. Interactions between neutrophils and periodontal pathogens in late-onset periodontitis[J]. Front Cell Infect Microbiol, 2021, 11: 627328. |
14 | Wang JY, Zhou YC, Ren B, et al. The role of neutrophil extracellular traps in periodontitis[J]. Front Cell Infect Microbiol, 2021, 11: 639144. |
15 | Hajishengallis G. New developments in neutrophil biology and periodontitis[J]. Periodontol 2000, 2020, 82(1): 78-92. |
16 | Cortez A, Muxfeldt E. Monocyte chemoattractant protein-1 and hypertension: an overview[J]. Hiper-tens Riesgo Vasc, 2022, 39(1): 14-23. |
17 | Fazzalari NL. Bone fracture and bone fracture repair[J]. Osteoporos Int, 2011, 22(6): 2003-2006. |
18 | Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transfor-ming growth factor beta superfamily during murine fracture healing[J]. J Bone Miner Res, 2002, 17(3): 513-520. |
19 | Schultze JL, Schmidt SV. Molecular features of macrophage activation[J]. Semin Immunol, 2015, 27(6): 416-423. |
20 | Schlundt C, Fischer H, Bucher CH, et al. The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time[J]. Acta Biomater, 2021, 133: 46-57. |
21 | Zhang B, Yang Y, Yi JR, et al. Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis[J]. J Periodontal Res, 2021, 56(5): 991-1005. |
22 | Chen M, Lin WM, Ye R, et al. PPARβ/δ agonist alleviates diabetic osteoporosis via regulating M1/M2 macrophage polarization[J]. Front Cell Dev Biol, 2021, 9: 753194. |
23 | Liu SC, Liu WL, Yang QF, et al. Non-coding-RNA-activated core/chitosan shell nanounits coated with polyetheretherketone for promoting bone regeneration and osseointegration via osteoimmunology[J]. ACS Appl Mater Interfaces, 2023, 15(10): 12653-12668. |
24 | Qiao D, Cheng SY, Xing Z, et al. Bio-inspired glycosylated nano-hydroxyapatites enhance endogenous bone regeneration by modulating macrophage M2 polarization[J]. Acta Biomater, 2023, 162: 135-148. |
25 | Wang JJ, Wang YZ, Li Y, et al. Unique regulation of TiO2 nanoporous topography on macrophage pola-rization via MSC-derived exosomes[J]. Regen Biomater, 2023, 10: rbad012. |
26 | Takayanagi H. Osteoimmunology and the effects of the immune system on bone[J]. Nat Rev Rheumatol, 2009, 5(12): 667-676. |
27 | Campbell L, Millhouse E, Malcolm J, et al. T cells, teeth and tissue destruction-what do T cells do in periodontal disease[J]. Mol Oral Microbiol, 2016, 31(6): 445-456. |
28 | Dar HY, Azam Z, Anupam R, et al. Osteoimmunology: the Nexus between bone and immune system[J]. Front Biosci, 2018, 23(3): 464-492. |
29 | Díaz-Zúñiga J, Melgar-Rodríguez S, Alvarez C, et al. T-lymphocyte phenotype and function triggered by Aggregatibacter actinomycetemcomitans is serotype-dependent[J]. J Periodontal Res, 2015, 50(6): 824-835. |
30 | Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance[J]. Cell, 2008, 133(5): 775-787. |
31 | Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses[J]. Annu Rev Immunol, 2004, 22: 531-562. |
32 | 葛楠, 陈莉. Th17/Treg细胞平衡与骨代谢[J]. 北京口腔医学, 2018, 26(2): 114-117. |
Ge N, Chen L. The balance of Th17/Treg cell and metabolism[J]. Beijing J Stomatol, 2018, 26(2): 114-117. | |
33 | Chen K, Tang LY, Nong XL. Artesunate targets cellular metabolism to regulate the Th17/Treg cell ba-lance[J]. Inflamm Res, 2023, 72(5): 1037-1050. |
34 | Zhang SW, Gang XK, Yang S, et al. The alterations in and the role of the Th17/Treg balance in metabo-lic diseases[J]. Front Immunol, 2021, 12: 678355. |
35 | Zhou L, Lopes JE, Chong MMW, et al. TGF-beta-induced Foxp3 inhibits Th17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008, 453(7192): 236-240. |
36 | Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabo-lic programs are essential for effector and regulatory CD4+ T cell subsets[J]. J Immunol, 2011, 186(6): 3299-3303. |
37 | Feng Y, Chen Z, Tu SQ, et al. Role of interleukin-17A in the pathomechanisms of periodontitis and related systemic chronic inflammatory diseases[J]. Front Immunol, 2022, 13: 862415. |
38 | Zhang Y, Chen JY, Fu HJ, et al. Exosomes derived from 3D-cultured MSCs improve therapeutic effects in periodontitis and experimental colitis and restore the Th17 cell/Treg balance in inflamed periodontium[J]. Int J Oral Sci, 2021, 13(1): 43. |
39 | Cafferata EA, Jerez A, Vernal R, et al. The therapeutic potential of regulatory T lymphocytes in perio-dontitis: a systematic review[J]. J Periodontal Res, 2019, 54(3): 207-217. |
40 | Huang F, Wong P, Li JL, et al. Osteoimmunology: the correlation between osteoclasts and the Th17/Treg balance in osteoporosis[J]. J Cell Mol Med, 2022, 26(13): 3591-3597. |
41 | Zhu L, Hua F, Ding WG, et al. The correlation between the Th17/Treg cell balance and bone health[J]. Immun Ageing, 2020, 17: 30. |
42 | Giro G, Tebar A, Franco L, et al. Treg and TH17 link to immune response in individuals with peri-implantitis: a preliminary report[J]. Clin Oral Investig, 2021, 25(3): 1291-1297. |
43 | Yin JJ, Fang YR, Liao YY, et al. Bioinformatics investigation of adaptive immune-related genes in peri-implantitis and periodontitis: characteristics and diagnostic values[J]. Immun Inflamm Dis, 2024, 12(5): e1272. |
44 | Cafferata EA, Castro-Saavedra S, Fuentes-Barros G, et al. Boldine inhibits the alveolar bone resorption during ligature-induced periodontitis by modulating the Th17/Treg imbalance[J]. J Periodontol, 2021, 92(1): 123-136. |
45 | Cafferata EA, Terraza-Aguirre C, Barrera R, et al. Interleukin-35 inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during perio-dontitis[J]. J Clin Periodontol, 2020, 47(6): 676-688. |
46 | Cheng WC, Hughes FJ, Taams LS. The presence, function and regulation of IL-17 and Th17 cells in periodontitis[J]. J Clin Periodontol, 2014, 41(6): 541-549. |
47 | Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction[J]. J Exp Med, 2006, 203(12): 2673-2682. |
48 | Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that indu-ces autoimmune inflammation[J]. J Exp Med, 2005, 201(2): 233-240. |
49 | Park H, Li ZX, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6(11): 1133-1141. |
50 | Jung S, Lee S, Kim HJ, et al. Mesenchymal stem cell-derived extracellular vesicles subvert Th17 cells by destabilizing RORγt through posttranslational modification[J]. Exp Mol Med, 2023, 55(3): 665-679. |
51 | Lee Y. The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases[J]. BMB Rep, 2013, 46(10): 479-483. |
52 | Gaffen SL, Moutsopoulos NM. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity[J]. Sci Immunol, 2020, 5(43): eaau4594. |
53 | Liu SC, Hsieh HL, Tsai CH, et al. CCN2 facilitates IL-17 production and osteoclastogenesis in human osteoarthritis synovial fibroblasts by inhibiting miR-655 expression[J]. J Bone Miner Res, 2022, 37(10): 1944-1955. |
54 | Vernal R, Díaz-Zúñiga J, Melgar-Rodríguez S, et al. Activation of RANKL-induced osteoclasts and me-mory T lymphocytes by Porphyromonas gingivalis is serotype dependant[J]. J Clin Periodontol, 2014, 41(5): 451-459. |
55 | Ono T, Takayanagi H. Osteoimmunology in bone fracture healing[J]. Curr Osteoporos Rep, 2017, 15(4): 367-375. |
56 | Adamopoulos IE, Chao CC, Geissler R, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors[J]. Arthritis Res Ther, 2010, 12(1): R29. |
57 | Kim HJ, Seo SJ, Kim JY, et al. IL-17 promotes osteoblast differentiation, bone regeneration, and remodeling in mice[J]. Biochem Biophys Res Commun, 2020, 524(4): 1044-1050. |
58 | Zhao XM, Liu WJ, Wu ZC, et al. Hepatocyte growth factor is protective in early stage but bone-destructive in late stage of experimental periodontitis[J]. J Periodontal Res, 2024, 59(3): 565-575. |
59 | Li GH, Liu L, Yin ZH, et al. Glutamine metabolism is essential for the production of IL-17A in γδ T cells and skin inflammation[J]. Tissue Cell, 2021, 71: 101569. |
60 | Peng RP, Dong YM, Zheng M, et al. IL-17 promotes osteoclast-induced bone loss by regulating glutamine-dependent energy metabolism[J]. Cell Death Dis, 2024, 15(2): 111. |
61 | Ono T, Okamoto K, Nakashima T, et al. IL-17-producing γδ T cells enhance bone regeneration[J]. Nat Commun, 2016, 7: 10928. |
62 | Nam D, Mau E, Wang YF, et al. T-lymphocytes ena-ble osteoblast maturation via IL-17F during the early phase of fracture repair[J]. PLoS One, 2012, 7(6): e40044. |
63 | Huang H, Kim HJ, Chang EJ, et al. IL-17 stimulates the proliferation and differentiation of human me-senchymal stem cells: implications for bone remode-ling[J]. Cell Death Differ, 2009, 16(10): 1332-1343. |
64 | McInnes IB, Mease PJ, Kirkham B, et al. Secukinu-mab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2015, 386(9999): 1137-1146. |
65 | Baeten D, Baraliakos X, Braun J, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial[J]. Lancet, 2013, 382(9906): 1705-1713. |
66 | Liao CS, Zhang CF, Jin LJ, et al. IL-17 alters the mesenchymal stem cell niche towards osteogenesis in cooperation with osteocytes[J]. J Cell Physiol, 2020, 235(5): 4466-4480. |
67 | Bao JQ, Wang ZX, Yang YT, et al. Interleukin-17 alleviates erastin-induced alveolar bone loss by suppressing ferroptosis via interaction between NRF2 and p-STAT3[J]. J Clin Periodontol, 2024, 51(2): 233-250. |
68 | Kim YG, Park JW, Lee JM, et al. IL-17 inhibits osteoblast differentiation and bone regeneration in rat[J]. Arch Oral Biol, 2014, 59(9): 897-905. |
69 | Gaffen SL. Structure and signalling in the IL-17 receptor family[J]. Nat Rev Immunol, 2009, 9(8): 556-567. |
70 | Raphael I, Nalawade S, Eagar TN, et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases[J]. Cytokine, 2015, 74(1): 5-17. |
71 | Lam J, Takeshita S, Barker JE, et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand[J]. J Clin Invest, 2000, 106(12): 1481-1488. |
72 | Zhang WJ, Dang K, Huai Y, et al. Osteoimmunology: the regulatory roles of T lymphocytes in osteoporosis[J]. Front Endocrinol, 2020, 11: 465. |
73 | Li SS, Yin YX, Yao LP, et al. TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR-335-5p[J]. Mol Med Rep, 2020, 22(2): 1017-1025. |
74 | Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling[J]. Nat Med, 2007, 13(2): 156-163. |
75 | Du D, Zhou ZB, Zhu L, et al. TNF-α suppresses osteogenic differentiation of MSCs by accelerating P2Y2 receptor in estrogen-deficiency induced osteoporosis[J]. Bone, 2018, 117: 161-170. |
76 | Rossi M, Rana I, Buonuomo PS, et al. Stimulation of Treg cells to inhibit osteoclastogenesis in gorham-stout disease[J]. Front Cell Dev Biol, 2021, 9: 706596. |
77 | Torres-Monjarás AP, Sánchez-Gutiérrez R, Her-nández-Castro B, et al. Bacteria associated with apical periodontitis promotes in vitro the differentiation of macrophages to osteoclasts[J]. Clin Oral Investig, 2023, 27(6): 3139-3148. |
78 | von Kaeppler EP, Wang Q, Raghu H, et al. Interleukin 4 promotes anti-inflammatory macrophages that clear cartilage debris and inhibits osteoclast development to protect against osteoarthritis[J]. Clin Immunol, 2021, 229: 108784. |
79 | Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems[J]. Physiol Rev, 2017, 97(4): 1295-1349. |
80 | Oi K, Tokunaga T, Kuranobu T, et al. Tumour necrosis factor α augments the inhibitory effects of CTLA-4-Ig on osteoclast generation from human monocytes via induction of CD80 expression[J]. Clin Exp Immunol, 2019, 196(3): 392-402. |
81 | Houde N, Chamoux E, Bisson M, et al. Transfor-ming growth factor-beta1 (TGF-beta1) induces human osteoclast apoptosis by up-regulating Bim[J]. J Biol Chem, 2009, 284(35): 23397-23404. |
82 | Xia YH, Inoue K, Du Y, et al. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis[J]. Nat Commun, 2022, 13(1): 3920. |
83 | Yasui T, Kadono Y, Nakamura M, et al. Regulation of RANKL-induced osteoclastogenesis by TGF‑β through molecular interaction between Smad3 and Traf6[J]. J Bone Miner Res, 2011, 26(7): 1447-1456. |
84 | Kaneda T, Nojima T, Nakagawa M, et al. Endogenous production of TGF-beta is essential for osteoclastogenesis induced by a combination of receptor activator of NF-kappa B ligand and macrophage-co-lony-stimulating factor[J]. J Immunol, 2000, 165(8): 4254-4263. |
85 | Lee B, Oh Y, Jo S, et al. A dual role of TGF-β in human osteoclast differentiation mediated by Smad1 versus Smad3 signaling[J]. Immunol Lett, 2019, 206: 33-40. |
86 | Richardson L, Wilcockson SG, Guglielmi L, et al. Context-dependent TGFβ family signalling in cell fate regulation[J]. Nat Rev Mol Cell Biol, 2023, 24(12): 876-894. |
87 | Quinn JM, Itoh K, Udagawa N, et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions[J]. J Bone Miner Res, 2001, 16(10): 1787-1794. |
88 | Karst M, Gorny G, Galvin RJ, et al. Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation[J]. J Cell Physiol, 2004, 200(1): 99-106. |
89 | Tanaka Y. Clinical immunity in bone and joints[J]. J Bone Miner Metab, 2019, 37(1): 2-8. |
90 | Runyan CE, Liu ZY, William Schnaper H. Phosphatidylinositol 3-kinase and Rab5 GTPase inversely regulate the Smad anchor for receptor activation (SARA) protein independently of transforming grow-th factor-β1[J]. J Biol Chem, 2012, 287(43): 35815-35824. |
91 | Zhao LM, Jiang S, Hantash BM. Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells[J]. Tissue Eng Part A, 2010, 16(2): 725-733. |
92 | Jann J, Gascon S, Roux S, et al. Influence of the TGF‑β superfamily on osteoclasts/osteoblasts ba-lance in physiological and pathological bone conditions[J]. Int J Mol Sci, 2020, 21(20): 7597. |
93 | Zhang ZD, Zhang XZ, Zhao DW, et al. TGF-β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway[J]. Mol Med Rep, 2019, 19(5): 3505-3518. |
94 | Yu MC, D’Amelio P, Tyagi AM, et al. Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice[J]. EMBO Rep, 2018, 19(1): 156-171. |
95 | Tyagi AM, Yu MC, Darby TM, et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression[J]. Immunity, 2018, 49(6): 1116-1131.e7. |
96 | Li CC, Bi W, Gong YM, et al. Transforming growth factor-beta1 inhibits tissue engineering cartilage absorption via inducing the generation of regulatory T cells[J]. J Tissue Eng Regen Med, 2016, 10(2): E113-E120. |
97 | Lin YF, Wang ZY, Liu SR, et al. Roles of extracellular vesicles on macrophages in inflammatory bone diseases[J]. Mol Cell Biochem, 2024, 479(6): 1401-1414. |
98 | Gu YZ, Han XZ. Toll-like receptor signaling and immune regulatory lymphocytes in periodontal disease[J]. Int J Mol Sci, 2020, 21(9): 3329. |
99 | Li RM, Zhu ZY, Zhang BL, et al. Manganese enhances the osteogenic effect of silicon-hydroxyapatite nanowires by targeting T lymphocyte polarization[J]. Adv Sci, 2024, 11(4): e2305890. |
100 | Fox S, Leitch AE, Duffin R, et al. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease[J]. J Innate Immun, 2010, 2(3): 216-227. |
101 | Wang XX, Sun B, Wang YJ, et al. Research pro-gress of targeted therapy regulating Th17/Treg ba-lance in bone immune diseases[J]. Front Immunol, 2024, 15: 1333993. |
102 | Deng JW, Lu CT, Zhao QT, et al. The Th17/Treg cell balance: crosstalk among the immune system, bone and microbes in periodontitis[J]. J Periodontal Res, 2022, 57(2): 246-255. |
103 | 周剑鹏, 谢旭东, 赵蕾, 等. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 42(5): 586-592. |
Zhou JP, Xie XD, Zhao L, et al. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis[J]. Int J Stomatol, 2022, 42(5): 586-592. | |
104 | 吕辉, 王华, 孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668. |
Lü H, Wang H, Sun W. T helper cell 17 and perio-dontitis related osteoimmunology[J]. Int J Stomatol, 2020, 47(6): 661-668. | |
105 | 张黎, 刘育菘, 吴芸菲, 等. 壳寡糖对牙周炎大鼠牙槽骨吸收及Th17/Treg平衡和OPG/RANKL/RANK通路的影响[J]. 上海口腔医学, 2021, 30(3): 237-242. |
Zhang L, Liu YS, Wu YF, et al. Effects of chitosan oligosaccharide on alveolar bone resorption, Th17/Treg balance and OPG/RANKL/RANK pathway in periodontitis rats[J]. Shanghai J Stomatol, 2021, 30(3): 237-242. | |
106 | Schipani E, Maes C, Carmeliet G, et al. Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF[J]. J Bone Miner Res, 2009, 24(8): 1347-1353. |
107 | Athanasopoulos AN, Schneider D, Keiper T, et al. Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing[J]. J Biol Chem, 2007, 282(37): 26746-26753. |
108 | Nagai K, Ideguchi H, Kajikawa T, et al. An injectable hydrogel-formulated inhibitor of prolyl-4-hydroxylase promotes T regulatory cell recruitment and enhances alveolar bone regeneration during re-solution of experimental periodontitis[J]. FASEB J, 2020, 34(10): 13726-13740. |
109 | Elashiry M, Elashiry MM, Elsayed R, et al. Dendri-tic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease in vivo [J]. J Extracell Vesicles, 2020, 9(1): 1795362. |
110 | Henin D, Fiorin LG, Carmagnola D, et al. Quantitative evaluation of inflammatory markers in peri-implantitis and periodontitis tissues: digital vs. manual analysis-a proof of concept study[J]. Medicina, 2022, 58(7): 867. |
111 | 黄萧瑜, 李明云, 周学东, 等. 全身及局部因素对种植体周围稳态的影响[J]. 国际口腔医学杂志, 2019, 46(6): 730-734. |
Huang XY, Li MY, Zhou XD, et al. Effects of systemic and local factors on microbial homeostasis around implants[J]. Int J Stomatol, 2019, 46(6): 730-734. | |
112 | Cha JK, Lee JS, Kim CS. Surgical therapy of peri-implantitis with local minocycline: a 6-month randomized controlled clinical trial[J]. J Dent Res, 2019, 98(3): 288-295. |
113 | Tarnow DP. Increasing prevalence of peri-implantitis: how will we manage[J]. J Dent Res, 2016, 95(1): 7-8. |
114 | Liu XC, Deng SD, Xie JX, et al. 2-DG regulates immune imbalance on the titanium surface after debridement[J]. Int J Mol Sci, 2023, 24(14): 11431. |