Int J Stomatol ›› 2024, Vol. 51 ›› Issue (5): 596-607.doi: 10.7518/gjkq.2024054

• Original Articles • Previous Articles     Next Articles

Antibacterial property of berberine-loaded coaxial electrospun membranes against periodontal pathogens and biofilms

Rui Zhang1(),Ting Hao1,Lü Wen1,Shuangshuang Ren2,Yu Liu3,Wenlei Wu3,Weibin Sun1()   

  1. 1.Dept. of Periodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
    2.Dept. of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
    3.Dept. of Senior Specialist, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
  • Received:2024-01-25 Revised:2024-06-13 Online:2024-09-01 Published:2024-09-14
  • Contact: Weibin Sun E-mail:zzzrrr2008@163.com;wbsun@nju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51972167)

Abstract:

Objective This study aimed to prepare berberine-loaded coaxial electrospun membranes, evaluate their antibacterial effects against periodontal pathogens, and explore their inhibitory effect on biofilm formation in vitro. Me-thods Coaxial polycaprolactone/gelatin electrospun membranes loaded with berberine (drug loading capacity of 0.25%, 0.5% and 1.0%, respectively) were fabrica-ted and characterized. The bacteriostatic zone test was used to evaluate the antibacterial effect against Porphyromonas gingivalis (ATCC 33277) and Fusobacterium nucleatum (ATCC 25586). Crystal violet staining, phenol-sulfuric acid method, colony counting method, and live/dead cell staining were used to comprehensively evaluate the inhibitory effect of drug-loaded electrospun membranes on biofilm formation. The cell counting kit-8 and confocal microscopy me-thods was used to evaluate the biocompatibility of electrospun membranes. Results The berberine-loaded electrospun membranes had stable physicochemical properties, and they could release berberine in vitro. The membranes (drug loa-ding capacity of 1.0%) exhibited efficient antibacterial activity against Porphyromonas gingivalis and Fusobacterium nucleatum, and inhibited the formation of biofilms in a concentration-dependent manner. The berberine-loaded membranes had good biocompatibility in vitro. Conclusion The berberine-loaded coaxial electrospun membranes were biocompatible, and they had an antibacterial potential against periodontal pathogens and biofilm formation in vitro. Therefore, it was promising to use berberine-loaded membranes as adjunctive therapy or to prevent postoperative infection.

Key words: berberine, coaxial electrospinning, Porphyromonas gingivalis, biofilm

CLC Number: 

  • R781.4

TrendMD: 

Fig 1

Characterization of the PCL/Gel and PCL/Gel-BBR-H fibrous membranes"

Fig 2

Release profile of berberine from drug-loaded membranes"

Fig 3

Antibacterial property of drug-loaded membranes in vitro"

Fig 4

Biofilm biomass of P. gingivalis and F. nucleatum biofilm under coculture with drug-loaded membranes"

Fig 5

EPS production of P. gingivalis and F. nucleatum biofilm under coculture with drug-loaded membranes"

Fig 6

Bacteria concentration and count of colony formation unit of P. gingivalis and F. nucleatum biofilm under coculture with drug-loaded membranes"

Fig 7

Live/dead staining of P. gingivalis and F. nucleatum biofilm under coculture with drug-loaded membranes"

Fig 8

Surface morphology of P. gingivalis and F. nucleatum biofilm under coculture with drug-loaded membranes SEM"

Fig 9

Relative cell activity under coculture with drug-loaded membranes"

Fig 10

Cell adhesion morphology on surface of the drug-loaded membranes confocal microscope × 10 000"

"

1 Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and propo-sal of a new classification and case definition[J]. J Periodontol, 2018, 89(): S159-S172.
2 Righolt AJ, Jevdjevic M, Marcenes W, et al. Glo-bal-, regional-, and country-level economic impacts of dental diseases in 2015[J]. J Dent Res, 2018, 97(5): 501-507.
3 Asa’ad F, Pagni G, Pilipchuk SP, et al. 3D-printed scaffolds and biomaterials: review of alveolar bone augmentation and periodontal regeneration applications[J]. Int J Dent, 2016, 2016: 1239842.
4 Nowzari H, MacDonald ES, Flynn J, et al. The dynamics of microbial colonization of barrier membranes for guided tissue regeneration[J]. J Periodontol, 1996, 67(7): 694-702.
5 Koushki P, Bahrami SH, Ranjbar-Mohammadi M. Coaxial nanofibers from poly(caprolactone)/poly(vinyl alcohol)/thyme and their antibacterial properties[J]. J Ind Text, 2018, 47(5): 834-852.
6 Nguyen TTT, Chung OH, Park JS. Coaxial electrospun poly(lactic acid)/chitosan (core/shell) compo-site nanofibers and their antibacterial activity[J]. Carbohydr Polym, 2011, 86(4): 1799-1806.
7 柳玉梅, 宋亚, 吴娟, 等. 黄连素温敏水凝胶的制备及其对牙周致病菌的抑菌作用评价[J]. 口腔生物医学, 2020, 11(2): 97-101.
Liu YM, Song Y, Wu J, et al. Preparation of berbe-rine-loaded thermo-sensitive hydrogels and evaluation of its antibacterial effect on periodontal bacteria[J]. Oral Biomed, 2020, 11(2): 97-101.
8 Zhang R, Yang J, Wu J, et al. Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regene-ration[J]. Eur J Pharmacol, 2019, 851: 144-150.
9 Chen HQ, Liu Q, Liu XQ, et al. Berberine attenua-tes septic cardiomyopathy by inhibiting TLR4/NF-κB signalling in rats[J]. Pharm Biol, 2021, 59(1): 121-128.
10 Gu HL, Liu AG, Ma WP, et al. Berberine hydrochloride mitigates acute pancreatitis by suppressing the TLR4/IκBα/NFκB pathway[J]. Life, 2020, 13(1): 276-285.
11 Yang T, Wang RL, Liu HH, et al. Berberine regulates macrophage polarization through IL-4-STAT6 signaling pathway in Helicobacter pylori-induced chronic atrophic gastritis[J]. Life Sci, 2021, 266: 118903.
12 Xu RD, Zhao HL, Muhammad H, et al. Dual-deli-very of FGF-2/CTGF from silk fibroin/PLCL-PEO coaxial fibers enhances MSC proliferation and fibrogenesis[J]. Sci Rep, 2017, 7(1): 8509.
13 Ding T, Li JH, Zhang XS, et al. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex regeneration[J]. Biomater Sci, 2020, 8(9): 2459-2471.
14 Siddiqui N, Asawa S, Birru B, et al. PCL-based composite scaffold matrices for tissue engineering applications[J]. Mol Biotechnol, 2018, 60(7): 506-532.
15 Li RJ, Ma YL, Zhang Y, et al. Potential of rhBMP-2 and dexamethasone-loaded Zein/PLLA scaffolds for enhanced in vitro osteogenesis of mesenchymal stem cells[J]. Colloids Surf B Biointerfaces, 2018, 169: 384-394.
16 Zandi N, Lotfi R, Tamjid E, et al. Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110432.
17 Gilani S, Mir S, Masood M, et al. Triple-component nanocomposite films prepared using a casting me-thod: its potential in drug delivery[J]. J Food Drug Anal, 2018, 26(2): 887-902.
18 Salević A, Stojanović D, Lević S, et al. The structu-ring of sage (Salvia officinalis L.) extract-incorpora-ting edible zein-based materials with antioxidant and antibacterial functionality by solvent casting versus electrospinning[J]. Foods, 2022, 11(3): 390.
19 Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration: a materials perspective[J]. Dent Mater, 2012, 28(7): 703-721.
20 Hwang PTJ, Murdock K, Alexander GC, et al. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering[J]. J Biomed Mater Res A, 2016, 104(4): 1017-1029.
21 Alissa Alam H, Dalgic AD, Tezcaner A, et al. A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering[J]. Int J Polym Mater Polym Biomater, 2020, 69(6): 339-350.
22 Yao RJ, He J, Meng GL, et al. Electrospun PCL/Gela-tin composite fibrous scaffolds: mechanical properties and cellular responses[J]. J Biomater Sci Polym Ed, 2016, 27(9): 824-838.
23 Nibali L, Buti J, Barbato L, et al. Adjunctive effect of systemic antibiotics in regenerative/reconstructive periodontal surgery-a systematic review with meta-analysis[J]. Antibiotics, 2021, 11(1): 8.
24 Khan MA, Sivaraj LD, Nahar P, et al. Efficacy of adjunctives in periodontal surgeries: an evidenced-based summary[J]. J Long Term Eff Med Implants, 2022, 32(4): 63-82.
25 邱艳梅, 李金陆, 连增林, 等. 黄连对牙髓卟啉单胞菌抑菌作用的体外研究[J]. 北京口腔医学, 2011, 19(2): 92-94.
Qiu YM, Li JL, Lian ZL, et al. Antimicrobial activity of coptis on Porphyromonas endodontalis in vitro [J]. Beijing J Stomatol, 2011, 19(2): 92-94.
26 Boberek JM, Stach J, Good L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine[J]. PLoS One, 2010, 5(10): e13745.
27 Barrows JM, Goley ED. FtsZ dynamics in bacterial division: what, how, and why[J]. Curr Opin Cell Biol, 2021, 68: 163-172.
28 Di Somma A, Canè C, Rotondo NP, et al. A compara-tive study of the inhibitory action of berberine deri-vatives on the recombinant protein FtsZ of E. coli [J]. Int J Mol Sci, 2023, 24(6): 5674.
29 Akinpelu OI, Kumalo HM, Mhlongo SI, et al. Identifying the analogues of berberine as promising antitubercular drugs targeting Mtb-FtsZ polymerisation through ligand-based virtual screening and molecular dynamics simulations[J]. J Mol Recognit, 2022, 35(2): e2940.
30 Sun N, Chan FY, Lu YJ, et al. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity[J]. PLoS One, 2014, 9(5): e97514.
31 Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action[J]. Virulence, 2018, 9(1): 522-554.
32 Wang XQ, Yao X, Zhu ZA, et al. Effect of berberine on Staphylococcus epidermidis biofilm formation[J]. Int J Antimicrob Agents, 2009, 34(1): 60-66.
33 Pang YS, Wang S, Tao JY, et al. Mechanism of berberine hydrochloride interfering with biofilm formation of Hafnia alvei [J]. Arch Microbiol, 2022, 204(2): 126.
34 Sun H, Huang SY, Jeyakkumar P, et al. Natural berberine-derived azolyl ethanols as new structural antibacterial agents against drug-resistant Escherichia coli [J]. J Med Chem, 2022, 65(1): 436-459.
35 Guo N, Zhao XC, Li WL, et al. The synergy of berberine chloride and totarol against Staphylococcus aureus grown in planktonic and biofilm cultures[J]. J Med Microbiol, 2015, 64(8): 891-900.
[1] Hongchen Mao,Zheng Wang,Deqin Yang. Advances in the role of outer membrane vesicles of Porphyromonas gingivalis in oral diseases and its mechanism [J]. Int J Stomatol, 2024, 51(5): 608-615.
[2] Yang Sirui,Ren Biao,Peng Xian,Xu Xin. Research progress on drug synergism with fluconazole in fluconazole-resistant Candida albicans [J]. Int J Stomatol, 2022, 49(5): 511-520.
[3] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[4] Wang Guanru,Feng Qiang.. Research progress on the role of Porphyromonas gingivalis on promoting the development of Alzheimer ’ s disease [J]. Int J Stomatol, 2022, 49(4): 397-403.
[5] Huang Peiqing,Peng Xian,Xu Xin. Volatile sulfur compounds and its role in the management of intra-oral halitosis [J]. Int J Stomatol, 2021, 48(5): 592-599.
[6] Li Shijia,Chen Qiuyu,Zou Jing,Huang Ruijie. Effect of nicotine on the growth of oral bacteria in single or mixed species [J]. Int J Stomatol, 2021, 48(3): 305-311.
[7] Lei Shuang,Yu Jingjun,Tang Xiaolin. Research progress on the effects and mechanisms of Porphyromonas gingivalis on vascular endothelial cells from different tissues [J]. Int J Stomatol, 2021, 48(1): 23-28.
[8] Cui Yujia,Sun Jianxun,Zhou Xuedong. Progress for understanding the effect of berberine in oral diseases [J]. Int J Stomatol, 2020, 47(1): 115-120.
[9] Zhang Zhiying,Liu Dongjuan,Pan Yaping. Research progress on Porphyromonas gingivalis outer membrane vesicles [J]. Int J Stomatol, 2019, 46(6): 670-674.
[10] Zi Yang,Benxiang Hou. Research progress on the extra- and intra-radicular biofilm associated with persistent apical periodontitis [J]. Inter J Stomatol, 2019, 46(2): 238-243.
[11] Fang Hongzhi, Tian Yuanyuan, Yu Xuan, Yang Yingming, Yang Hui, Hu Tao. The influence of exogenous dextranase and sodium fluoride on biofilm of Actinomyces viscosus under different sucrose concentration conditions [J]. Inter J Stomatol, 2017, 44(6): 654-659.
[12] Liu Shiyu, Tian Mi, Shi Liran, Pan Weilin, Wang Yiyao, Li Mingyun. Effect of nicotine and mecamylamine on growth of periodontal pathogens [J]. Inter J Stomatol, 2017, 44(4): 421-425.
[13] Lu Xiao, Weng Chunhui, Wang Jinming, Liu Shaojuan, Liu Qin, Lin Shan. Biofilm formation and antimicrobial susceptibility of Streptococcus mitis in response to luxS/AI-2 signaling [J]. Inter J Stomatol, 2017, 44(4): 411-420.
[14] Zhou Shuangshuang, Zheng Xin, Zhou Xuedong, Xu Xin. Relationship of alkali production by plaque biofilm and dental caries [J]. Inter J Stomatol, 2016, 43(5): 573-577.
[15] Han Zhiqiang, Bai Yang, Xiao Shuiqing, Sun Fei, He Ping. Influence of Porphyromonas gingivalis and its gingipain K in healthy gingiva of teenagers [J]. Inter J Stomatol, 2016, 43(3): 283-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Jiang Meng, Zhang Ling, Li Jiyao, Liu Qian. .
Research progress on musculoskeletal disorders among dentists
[J]. Inter J Stomatol, 2013, 40(2): 249 -252 .
[2] . [J]. Foreign Med Sci: Stomatol, 2006, 33(02): 110 -113 .
[3] MA Liang, WANG Sheng-chao, ZHANG Ya-qing.. Role of epigenetics in tooth morphogenesis[J]. Inter J Stomatol, 2010, 37(4): 447 -450 .
[4] Yan Yue,Hou Jianxia. Subgingival debridement and root planing[J]. Int J Stomatol, 2021, 48(1): 29 -34 .