Int J Stomatol ›› 2020, Vol. 47 ›› Issue (2): 138-145.doi: 10.7518/gjkq.2020018
• Periodontitis • Previous Articles Next Articles
Wang Runting1,2,Fang Fuchun1,2()
CLC Number:
[1] | Pihlstrom BL, Michalowicz BS, Johnson NW . Perio-dontal diseases[J]. Lancet, 2005,366(9499):1809-1820. |
[2] | 王兴 . 第四次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2018: 25-34. |
Wang X. The forth national oral health epidemiolo-gical survey[M]. Beijing: People’s Medical Publishing House, 2018: 25-34. | |
[3] | Graziani F, Karapetsa D, Mardas N , et al. Surgical treatment of the residual periodontal pocket[J]. Pe-riodontol 2000, 2018,76(1):150-163. |
[4] | Vaquette C, Pilipchuk SP, Bartold PM , et al. Tissue engineered constructs for periodontal regeneration: current status and future perspectives[J]. Adv Heal-thc Mater, 2018,7(21):e1800457. |
[5] | Iviglia G, Kargozar S, Baino F . Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration[J]. J Funct Biomater, 2019,10(1). doi: 10.3390/jfb10010003. |
[6] | Seo BM, Miura M, Gronthos S , et al. Investigation of multipotent postnatal stem cells from human pe-riodontal ligament[J]. Lancet, 2004,364(9429):149-155. |
[7] | Hernández-Monjaraz B, Santiago-Osorio E, Monroy-García A , et al. Mesenchymal stem cells of dental origin for inducing tissue regeneration in perio-dontitis: a mini-review[J]. Int J Mol Sci, 2018,19(4). doi: 10.3390/ijms19040944. |
[8] | International Human Genome Sequencing Consor-tium. Finishing the euchromatic sequence of the human genome[J]. Nature, 2004,431(7011):931-945. |
[9] | Ponting CP, Belgard TG . Transcribed dark matter: meaning or myth[J]. Hum Mol Genet, 2010,19(R2):R162-R168. |
[10] | Kaur P, Liu F, Tan JR , et al. Non-coding RNAs as potential neuroprotectants against ischemic brain injury[J]. Brain Sci, 2013,3(1):360-395. |
[11] | Vemuganti R . All’s well that transcribes well: non-coding RNAs and post-stroke brain damage[J]. Neu-rochem Int, 2013,63(5):438-449. |
[12] | Liu B, Li J, Cairns MJ . Identifying miRNAs, targets and functions[J]. Brief Bioinform, 2014,15(1):1-19. |
[13] | Vidigal JA, Ventura A . The biological functions of miRNAs: lessons from in vivo studies[J]. Trends Cell Biol, 2015,25(3):137-147. |
[14] | Hao Y, Ge Y, Li J , et al. Identification of MicroRNAs by microarray analysis and prediction of target genes involved in osteogenic differentiation of human periodontal ligament stem cells[J]. J Periodontol, 2017,88(10):1105-1113. |
[15] | Li Z, Sun Y, Cao S , et al. Downregulation of miR-24-3p promotes osteogenic differentiation of human periodontal ligament stem cells by targeting SMAD family member 5[J]. J Cell Physiol, 2019,234(5):7411-7419. |
[16] | Wei F, Yang S, Guo Q , et al. MicroRNA-21 regulates osteogenic differentiation of periodontal ligament stem cells by targeting Smad5[J]. Sci Rep, 2017,7(1):16608. |
[17] | Yang N, Li Y, Wang G , et al. Tumor necrosis factor-α suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibi-ting miR-21/Spry1 functional axis[J]. Differentiation, 2017,97:33-43. |
[18] | 冯保静, 赵西博, 郝志红 , 等. miR-203靶向RUNX2对牙周膜干细胞成骨向分化能力的调控作用[J]. 口腔颌面修复学杂志, 2019,20(1):44-48. |
Feng BJ, Zhao XB, Hao ZH , et al. Study on effect of miR-203 for targeting RUNX2 on osteogenic dif-ferentiation of human periodontal ligament stem cells[J]. Chin J Prosthodont, 2019,20(1):44-48. | |
[19] | Chen Z, Liu HL . Restoration of miR-1305 relieves the inhibitory effect of nicotine on periodontal liga-ment-derived stem cell proliferation, migration, and osteogenic differentiation[J]. J Oral Pathol Med, 2017,46(4):313-320. |
[20] | Gay I, Cavender A, Peto D , et al. Differentiation of human dental stem cells reveals a role for micro-RNA-218[J]. J Periodontal Res, 2014,49(1):110-120. |
[21] | Yao S, Zhao W, Ou Q , et al. MicroRNA-214 sup-presses osteogenic differentiation of human perio-dontal ligament stem cells by targeting ATF4[J]. Stem Cells Int, 2017,2017:3028647. |
[22] | Cao F, Zhan J, Chen X , et al. miR-214 promotes periodontal ligament stem cell osteoblastic differen-tiation by modulating Wnt/β-catenin signaling[J]. Mol Med Rep, 2017,16(6):9301-9308. |
[23] | Liu W, Liu Y, Guo T , et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments[J]. Cell Death Dis, 2013,4:e539. |
[24] | Liu Y, Liu W, Hu C , et al. MiR-17 modulates osteo-genic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from perio-dontal ligaments of patients with periodontitis[J]. Stem Cells, 2011,29(11):1804-1816. |
[25] | Zhen L, Jiang X, Chen Y , et al. MiR-31 is involved in the high glucose-suppressed osteogenic differentia-tion of human periodontal ligament stem cells by targeting Satb2[J]. Am J Transl Res, 2017,9(5):2384-2393. |
[26] | Hong L, Sharp T, Khorsand B , et al. MicroRNA-200c represses IL-6, IL-8, and CCL-5 expression and enhances osteogenic differentiation[J]. PLoS One, 2016,11(8):e0160915. |
[27] | Ge Y, Li J, Hao Y , et al. MicroRNA-543 functions as an osteogenesis promoter in human periodontal ligament-derived stem cells by inhibiting transducer of ERBB2, 2[J]. J Periodontal Res, 2018,53(5):832-841. |
[28] | Yan GQ, Wang X, Yang F , et al. MicroRNA-22 promoted osteogenic differentiation of human perio-dontal ligament stem cells by targeting HDAC6[J]. J Cell Biochem, 2017,118(7):1653-1658. |
[29] | Wei FL, Wang JH, Ding G , et al. Mechanical force-induced specific MicroRNA expression in human periodontal ligament stem cells[J]. Cells Tissues Organs, 2014,199(5/6):353-363. |
[30] | Dragomir MP, Knutsen E, Calin GA . SnapShot: unconventional miRNA functions[J]. Cell, 2018, 174(4): 1038-1038.e1. |
[31] | Iyer MK, Niknafs YS, Malik R , et al. The landscape of long noncoding RNAs in the human transcriptome[J]. Nat Genet, 2015,47(3):199-208. |
[32] | Zheng Y, Li X, Huang Y , et al. Time series clustering of mRNA and lncRNA expression during osteogenic differentiation of periodontal ligament stem cells[J]. Peer J, 2018,6:e5214. |
[33] | Gu X, Li M, Jin Y , et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017,18(1):100. |
[34] | Qu Q, Fang F, Wu B , et al. Potential role of long non-coding RNA in osteogenic differentiation of human periodontal ligament stem cells[J]. J Perio-dontol, 2016,87(7):e127-e137. |
[35] | Huang Y, Zhang Y, Li X , et al. The long non-coding RNA landscape of periodontal ligament stem cells subjected to compressive force[J]. Eur J Orthod, 2019,41(4):333-342. |
[36] | He Q, Yang S, Gu X , et al. Long noncoding RNA TUG1 facilitates osteogenic differentiation of perio-dontal ligament stem cells via interacting with Lin-28A[J]. Cell Death Dis, 2018,9(5):455. |
[37] | Liu Y, Zeng X, Miao J , et al. Upregulation of long noncoding RNA MEG3 inhibits the osteogenic dif-ferentiation of periodontal ligament cells[J]. J Cell Physiol, 2019,234(4):4617-4626. |
[38] | Jia Q, Jiang W, Ni L . Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic dif-ferentiation of periodontal ligament stem cells[J]. Arch Oral Biol, 2015,60(2):234-241. |
[39] | Wang L, Wu F, Song Y , et al. Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients[J]. Cell Death Dis, 2016,7(8):e2327. |
[40] | Peng W, Deng W, Zhang J , et al. Long noncoding RNA ANCR suppresses bone formation of perio-dontal ligament stem cells via sponging miRNA-758[J]. Biochem Biophys Res Commun, 2018,503(2):815-821. |
[41] | Jia B, Qiu X, Chen J , et al. A feed-forward regulatory network lncPCAT1/miR-106a-5p/E2F5 regulates the osteogenic differentiation of periodontal ligament stem cells[J]. J Cell Physiol, 2019,234(11):19523-19538. |
[42] | Chen D, Wu L, Liu L , et al. Comparison of HIF1A-AS1 and HIF1A-AS2 in regulating HIF-1α and the osteogenic differentiation of PDLCs under hypoxia[J]. Int J Mol Med, 2017,40(5):1529-1536. |
[43] | Zhu L, Xu PC . Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression[J]. Biochem Biophys Res Commun, 2013,432(4):612-617. |
[44] | Zhang J, Hao X, Yin M , et al. Long non-coding RNA in osteogenesis: a new world to be explored[J]. Bone Joint Res, 2019,8(2):73-80. |
[45] | Qu S, Yang X, Li X , et al. Circular RNA: a new star of noncoding RNAs[J]. Cancer Lett, 2015,365(2):141-148. |
[46] | Li X, Zheng Y, Zheng Y , et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018,9(1):232. |
[47] | Wang H, Feng C, Jin Y , et al. Identification and characterization of circular RNAs involved in me-chanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019,234(7):10166-10177. |
[48] | Zhang Y, Zhang XO, Chen T , et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013,51(6):792-806. |
[49] | Ashwal-Fluss R, Meyer M, Pamudurti NR , et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014,56(1):55-66. |
[50] | Du WW, Yang W, Liu E , et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016,44(6):2846-2858. |