Int J Stomatol ›› 2020, Vol. 47 ›› Issue (2): 138-145.doi: 10.7518/gjkq.2020018

• Periodontitis • Previous Articles     Next Articles

Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells

Wang Runting1,2,Fang Fuchun1,2()   

  1. 1. Dept. of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
    2. School of Stomatology, Southern Medical University, Guangzhou 510515, China
  • Received:2019-06-14 Revised:2019-10-23 Online:2020-03-01 Published:2020-03-12
  • Contact: Fuchun Fang E-mail:fangfuchun520@163.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81600882)

Abstract:

Periodontitis is a common inflammatory disease that is characterised by progressive damage to dental supporting structure. Periodontitis is the main cause of tooth loss in adults in China. The aim of periodontal treatment is not only to control inflammation and prevent disease development but also to obtain periodontal regeneration. Human periodontal ligament stem cells (PDLSCs), which are capable of osteogenic differentiation, are expected to play important roles in clinical application of periodontal tissue repair and regeneration. Non-coding RNAs (ncRNAs) generally refer to RNAs that do not encode proteins. The continuous development of high-throughput detection techniques has allowed the identification of a large number of ncRNAs and their biological functions. Increasing numbers of ncRNAs have been reported to function in the pathogenesis of diseases at molecular and cellular levels. Therefore, research on ncRNAs can provide new insights into periodontal regeneration. This review focuses on the regulatory mechanism of several ncRNAs in the osteogenic differentiation of human PDLSCs.

Key words: non-coding RNA, periodontal regeneration, periodontal ligament stem cell, osteogenic differentiation

CLC Number: 

  • Q756

TrendMD: 

Tab 1

Regulation of ncRNAs on osteogenic differentiation of periodontal ligament stem cells"

名称 类型 诱导方式 调控水平 调控作用 可能的靶基因或作用通路 文献
miR-24-3p miRNA 矿化 转录后水平 抑制 靶向作用Smad5 [15]
miR-21 miRNA 矿化 转录后水平 抑制 靶向作用Smad5 [16]
矿化 转录后水平 抑制 miR-21/Spry1调控轴介导TNF-α对牙周膜干细胞的抑制成骨 [17]
作用
剪切力 转录后水平 抑制 靶向作用ACVR2B [29]
miR-203 miRNA 矿化 转录后水平 抑制 靶向作用RUNX2 [18]
miR-1305 miRNA 矿化 转录后水平 抑制 靶向作用RUNX2 [19]
miR-218 miRNA 矿化 转录后水平 抑制 靶向作用RUNX2 [20]
miR-214 miRNA 矿化 转录后水平 抑制 靶向作用ATF4 [21]
矿化 转录后水平 抑制 通过靶向作用β-连环蛋白1调节Wnt/β-连环蛋白信号通路 [22]
miR-17 miRNA 矿化 转录后水平 抑制 通过靶向作用TCF3调节经典Wnt信号通路 [23-24]
miR-31 miRNA 矿化 转录后水平 抑制 靶向作用Satb2 [25]
miR-200c miRNA 矿化 转录后水平 促进 抑制IL-6、IL-8和CCL-5 [26]
miR-543 miRNA 矿化 转录后水平 促进 靶向作用TOB2 [27]
miR-22 miRNA 矿化 转录后水平 促进 抑制HDAC6 [28]
名称 类型 诱导方式 调控水平 调控作用 可能的靶基因或作用通路 文献
MEG3 lncRNA 矿化 转录水平 抑制 与hnRNPK结合,影响BMP2转录 [37]
ANCR lncRNA 矿化 转录水平 抑制 通过调控GSK3β的表达抑制Wnt/β-连环蛋白信号通路,下调 [38]
RUNX2
矿化 转录后水平 抑制 ANCR/miR-758/Notch2 [40]
TUG1 lncRNA 矿化 转录水平 促进 Lin28A蛋白作为TUG1的RBP形成正性调控网络 [36]
PCAT1 lncRNA 矿化 转录后水平 促进 PCAT1/miR-106a-5p/BMP2 PCAT1/miR-106a-5p/E2F5前馈调 [41]
节网络
HIF1A-AS2 lncRNA 缺氧 转录后水平 促进 通过碱基配对与HIF-1α形成双链RNA,提高蛋白质翻译水平 [42]
CDR1 circRNA 矿化 转录后水平 促进 竞争性结合miR-7,使GDF5上调、Smad1/5/8及p38MAPK [46]
磷酸化
[1] Pihlstrom BL, Michalowicz BS, Johnson NW . Perio-dontal diseases[J]. Lancet, 2005,366(9499):1809-1820.
[2] 王兴 . 第四次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2018: 25-34.
Wang X. The forth national oral health epidemiolo-gical survey[M]. Beijing: People’s Medical Publishing House, 2018: 25-34.
[3] Graziani F, Karapetsa D, Mardas N , et al. Surgical treatment of the residual periodontal pocket[J]. Pe-riodontol 2000, 2018,76(1):150-163.
[4] Vaquette C, Pilipchuk SP, Bartold PM , et al. Tissue engineered constructs for periodontal regeneration: current status and future perspectives[J]. Adv Heal-thc Mater, 2018,7(21):e1800457.
[5] Iviglia G, Kargozar S, Baino F . Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration[J]. J Funct Biomater, 2019,10(1). doi: 10.3390/jfb10010003.
[6] Seo BM, Miura M, Gronthos S , et al. Investigation of multipotent postnatal stem cells from human pe-riodontal ligament[J]. Lancet, 2004,364(9429):149-155.
[7] Hernández-Monjaraz B, Santiago-Osorio E, Monroy-García A , et al. Mesenchymal stem cells of dental origin for inducing tissue regeneration in perio-dontitis: a mini-review[J]. Int J Mol Sci, 2018,19(4). doi: 10.3390/ijms19040944.
[8] International Human Genome Sequencing Consor-tium. Finishing the euchromatic sequence of the human genome[J]. Nature, 2004,431(7011):931-945.
[9] Ponting CP, Belgard TG . Transcribed dark matter: meaning or myth[J]. Hum Mol Genet, 2010,19(R2):R162-R168.
[10] Kaur P, Liu F, Tan JR , et al. Non-coding RNAs as potential neuroprotectants against ischemic brain injury[J]. Brain Sci, 2013,3(1):360-395.
[11] Vemuganti R . All’s well that transcribes well: non-coding RNAs and post-stroke brain damage[J]. Neu-rochem Int, 2013,63(5):438-449.
[12] Liu B, Li J, Cairns MJ . Identifying miRNAs, targets and functions[J]. Brief Bioinform, 2014,15(1):1-19.
[13] Vidigal JA, Ventura A . The biological functions of miRNAs: lessons from in vivo studies[J]. Trends Cell Biol, 2015,25(3):137-147.
[14] Hao Y, Ge Y, Li J , et al. Identification of MicroRNAs by microarray analysis and prediction of target genes involved in osteogenic differentiation of human periodontal ligament stem cells[J]. J Periodontol, 2017,88(10):1105-1113.
[15] Li Z, Sun Y, Cao S , et al. Downregulation of miR-24-3p promotes osteogenic differentiation of human periodontal ligament stem cells by targeting SMAD family member 5[J]. J Cell Physiol, 2019,234(5):7411-7419.
[16] Wei F, Yang S, Guo Q , et al. MicroRNA-21 regulates osteogenic differentiation of periodontal ligament stem cells by targeting Smad5[J]. Sci Rep, 2017,7(1):16608.
[17] Yang N, Li Y, Wang G , et al. Tumor necrosis factor-α suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibi-ting miR-21/Spry1 functional axis[J]. Differentiation, 2017,97:33-43.
[18] 冯保静, 赵西博, 郝志红 , 等. miR-203靶向RUNX2对牙周膜干细胞成骨向分化能力的调控作用[J]. 口腔颌面修复学杂志, 2019,20(1):44-48.
Feng BJ, Zhao XB, Hao ZH , et al. Study on effect of miR-203 for targeting RUNX2 on osteogenic dif-ferentiation of human periodontal ligament stem cells[J]. Chin J Prosthodont, 2019,20(1):44-48.
[19] Chen Z, Liu HL . Restoration of miR-1305 relieves the inhibitory effect of nicotine on periodontal liga-ment-derived stem cell proliferation, migration, and osteogenic differentiation[J]. J Oral Pathol Med, 2017,46(4):313-320.
[20] Gay I, Cavender A, Peto D , et al. Differentiation of human dental stem cells reveals a role for micro-RNA-218[J]. J Periodontal Res, 2014,49(1):110-120.
[21] Yao S, Zhao W, Ou Q , et al. MicroRNA-214 sup-presses osteogenic differentiation of human perio-dontal ligament stem cells by targeting ATF4[J]. Stem Cells Int, 2017,2017:3028647.
[22] Cao F, Zhan J, Chen X , et al. miR-214 promotes periodontal ligament stem cell osteoblastic differen-tiation by modulating Wnt/β-catenin signaling[J]. Mol Med Rep, 2017,16(6):9301-9308.
[23] Liu W, Liu Y, Guo T , et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments[J]. Cell Death Dis, 2013,4:e539.
[24] Liu Y, Liu W, Hu C , et al. MiR-17 modulates osteo-genic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from perio-dontal ligaments of patients with periodontitis[J]. Stem Cells, 2011,29(11):1804-1816.
[25] Zhen L, Jiang X, Chen Y , et al. MiR-31 is involved in the high glucose-suppressed osteogenic differentia-tion of human periodontal ligament stem cells by targeting Satb2[J]. Am J Transl Res, 2017,9(5):2384-2393.
[26] Hong L, Sharp T, Khorsand B , et al. MicroRNA-200c represses IL-6, IL-8, and CCL-5 expression and enhances osteogenic differentiation[J]. PLoS One, 2016,11(8):e0160915.
[27] Ge Y, Li J, Hao Y , et al. MicroRNA-543 functions as an osteogenesis promoter in human periodontal ligament-derived stem cells by inhibiting transducer of ERBB2, 2[J]. J Periodontal Res, 2018,53(5):832-841.
[28] Yan GQ, Wang X, Yang F , et al. MicroRNA-22 promoted osteogenic differentiation of human perio-dontal ligament stem cells by targeting HDAC6[J]. J Cell Biochem, 2017,118(7):1653-1658.
[29] Wei FL, Wang JH, Ding G , et al. Mechanical force-induced specific MicroRNA expression in human periodontal ligament stem cells[J]. Cells Tissues Organs, 2014,199(5/6):353-363.
[30] Dragomir MP, Knutsen E, Calin GA . SnapShot: unconventional miRNA functions[J]. Cell, 2018, 174(4): 1038-1038.e1.
[31] Iyer MK, Niknafs YS, Malik R , et al. The landscape of long noncoding RNAs in the human transcriptome[J]. Nat Genet, 2015,47(3):199-208.
[32] Zheng Y, Li X, Huang Y , et al. Time series clustering of mRNA and lncRNA expression during osteogenic differentiation of periodontal ligament stem cells[J]. Peer J, 2018,6:e5214.
[33] Gu X, Li M, Jin Y , et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017,18(1):100.
[34] Qu Q, Fang F, Wu B , et al. Potential role of long non-coding RNA in osteogenic differentiation of human periodontal ligament stem cells[J]. J Perio-dontol, 2016,87(7):e127-e137.
[35] Huang Y, Zhang Y, Li X , et al. The long non-coding RNA landscape of periodontal ligament stem cells subjected to compressive force[J]. Eur J Orthod, 2019,41(4):333-342.
[36] He Q, Yang S, Gu X , et al. Long noncoding RNA TUG1 facilitates osteogenic differentiation of perio-dontal ligament stem cells via interacting with Lin-28A[J]. Cell Death Dis, 2018,9(5):455.
[37] Liu Y, Zeng X, Miao J , et al. Upregulation of long noncoding RNA MEG3 inhibits the osteogenic dif-ferentiation of periodontal ligament cells[J]. J Cell Physiol, 2019,234(4):4617-4626.
[38] Jia Q, Jiang W, Ni L . Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic dif-ferentiation of periodontal ligament stem cells[J]. Arch Oral Biol, 2015,60(2):234-241.
[39] Wang L, Wu F, Song Y , et al. Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients[J]. Cell Death Dis, 2016,7(8):e2327.
[40] Peng W, Deng W, Zhang J , et al. Long noncoding RNA ANCR suppresses bone formation of perio-dontal ligament stem cells via sponging miRNA-758[J]. Biochem Biophys Res Commun, 2018,503(2):815-821.
[41] Jia B, Qiu X, Chen J , et al. A feed-forward regulatory network lncPCAT1/miR-106a-5p/E2F5 regulates the osteogenic differentiation of periodontal ligament stem cells[J]. J Cell Physiol, 2019,234(11):19523-19538.
[42] Chen D, Wu L, Liu L , et al. Comparison of HIF1A-AS1 and HIF1A-AS2 in regulating HIF-1α and the osteogenic differentiation of PDLCs under hypoxia[J]. Int J Mol Med, 2017,40(5):1529-1536.
[43] Zhu L, Xu PC . Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression[J]. Biochem Biophys Res Commun, 2013,432(4):612-617.
[44] Zhang J, Hao X, Yin M , et al. Long non-coding RNA in osteogenesis: a new world to be explored[J]. Bone Joint Res, 2019,8(2):73-80.
[45] Qu S, Yang X, Li X , et al. Circular RNA: a new star of noncoding RNAs[J]. Cancer Lett, 2015,365(2):141-148.
[46] Li X, Zheng Y, Zheng Y , et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018,9(1):232.
[47] Wang H, Feng C, Jin Y , et al. Identification and characterization of circular RNAs involved in me-chanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019,234(7):10166-10177.
[48] Zhang Y, Zhang XO, Chen T , et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013,51(6):792-806.
[49] Ashwal-Fluss R, Meyer M, Pamudurti NR , et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014,56(1):55-66.
[50] Du WW, Yang W, Liu E , et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016,44(6):2846-2858.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Yang Mengyao,Gao Xianling,Deng Shuli. Application of electrospun nanofibers in periodontal regeneration [J]. Int J Stomatol, 2023, 50(1): 10-18.
[3] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[4] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[5] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[6] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[7] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[8] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[9] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[10] Wang Shiqi,Chang Yaqin,Chen Bin,Tan Baochun,Ni Yanhong. Comparison of clinical outcomes between using bone graft alone and the combination of bone graft with membrane for periodontal regeneration therapy: a systematic review and Meta-analysis [J]. Int J Stomatol, 2020, 47(6): 644-651.
[11] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[12] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[13] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[14] Wu Xiaonan,Ma Ning,Hou Jianxia. Research progress of exosomes derived from different stem cells in periodontal regeneration [J]. Int J Stomatol, 2020, 47(2): 146-151.
[15] Yu Xiaohong,Liu Yu,Zeng Lian,Yang Yanling,Wang Zhou,Li Wei. Effects of enamel matrix derivative on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(1): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .