Int J Stomatol ›› 2024, Vol. 51 ›› Issue (3): 265-277.doi: 10.7518/gjkq.2024033

• Oral tissue regeneration • Previous Articles     Next Articles

Periodontal ligament stem cells regulate bone remodeling under mechanical stress

Xing Han(),Yinghui Li,Wenwen Li,Shukui Xu,Wensheng Ma()   

  1. Dept. of Orthodontics, Hospital of Stomatology, Hebei Medical University, Hebei Provincial Key Laboratory of Stomato-logy, Hebei Provincial Clinical Medical Research Center for Oral Diseases, Shijiazhuang 050000, China
  • Received:2023-04-15 Revised:2023-11-07 Online:2024-05-01 Published:2024-05-06
  • Contact: Wensheng Ma E-mail:hanx15132121552@126.com;wsma02@sina.com
  • Supported by:
    Key Research and DevelopmentFoundation: Plan of Hebei Province (Special Project of Health Innovation)(22377764D);Hebei Province Medical Scientific Research Project Plan(20191077)

Abstract:

Mechanical stress-induced periodontal tissue remodeling plays an important role in the regulation of oral homeostasis. The periodontal ligament provides a microenvironment support for orthodontic tooth movement (OTM). Perio-dontal ligament stem cells (PDLSCs), an important mesenchymal stem cell in the periodontal ligament, play an important role in regulating periodontal tissue modeling. This paper reviews research progress in the regulation of bone remode-ling by PDLSCs under mechanical stimulation and emphasizes that PDLSCs can sense mechanical stimulation through various pathways. This mesenchymal stem cell type has multi-directional differentiation ability and immune regulation capability. PDLSC regulates bone remodeling by regulating the activities of skeletal system cells such as osteoblasts, osteoclasts, and osteoblasts and can indirectly affect bone remodeling by regulating the activities of the immune system. This study will provide a basis for further exploration of the regulatory effects of mechanical forces on bone remodeling, such as OTM, and enrich the functional roles of PDLSCs in the field of bone remodeling.

Key words: mechanical stress, periodontal ligament stem cell, osteogenic differentiation, osteoclast

CLC Number: 

  • R78

TrendMD: 

Fig 1

Regulation of osteogenic differentiation and osteoclast differentiation by PDLSC under mechanical stress"

Fig 2

Stress response of periodontal ligament stem cells under mechanical stress"

Fig 3

Periodontal ligament stem cells regulate bone remodeling through immune system under mechanical stress"

1 Chen S, Ye X, Yu X, et al. Co-culture with periodontal ligament stem cells enhanced osteoblastic diffe-rentiation of MC3T3-E1 cells and osteoclastic diffe-rentiation of RAW264.7 cells[J]. Int J Clin Exp Pathol, 2015, 8(11): 14596-14607.
2 Zhao Z, Liu J, Weir MD, et al. Periodontal ligament stem cell-based bioactive constructs for bone tissue engineering[J]. Front Bioeng Biotechnol, 2022(10): 1071472.
3 Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force[J]. Am J Orthod Dentofac Orthop, 2006, 129(4): 469.e1-469.e32.
4 Wang L, Liang H, Sun B, et al. Role of TRPC6 in periodontal tissue reconstruction mediated by appropriate stress[J]. Stem Cell Res Ther, 2022, 13(1): 401.
5 王林, 王熙, 季楠, 等. 机械激活性离子通道压电蛋白Piezo1通过Notch信号通路介导牙周膜干细胞成骨分化作用机制研究[J]. 华西口腔医学杂志, 2020, 38(6): 628-636.
Wang L, Wang X, Ji N, et al. Mechanisms of the mechanically activated ion channel Piezo1 protein in mediating osteogenic differentiation of periodontal ligament stem cells via the Notch signaling pathway[J]. West China J Stomatol, 2020, 38(6): 628-636.
6 杨双艳. 内质网应激介导的PERK-eIF2α-ATF4信号通路在牵张力作用下牙周膜干细胞成骨向分化中的作用研究[D]. 济南: 山东大学, 2017.
Yang SY. Study of PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response in hPDLSCs osteogenic differentiation induced by cyclic stretch[D]. Jinan: Shandong University, 2017.
7 席迅. ROS-Nrf2在周期性牵张力促进牙周膜干细胞成骨分化中的作用及机制研究[D]. 济南: 山东大学, 2023.
Xi X. Effects and mechanism of ROS-Nrf2 on osteogenic differentiation in periodontal ligament stem cells under cyclic mechanical stress[D]. Jinan: Shandong University, 2023.
8 Xi X, Li Z, Liu H, et al. Nrf2 activation is involved in cyclic mechanical stress-stimulated osteogenic differentiation in periodontal ligament stem cells via PI3K/Akt signaling and HO1-SOD2 interaction[J]. Front Cell Dev Biol, 2022, 9: 816000.
9 Sun Y, Kaneko S, Li XK, et al. The PI3K/Akt signal hyperactivates Eya1 via the SUMOylation pathway[J]. Oncogene, 2015, 34(19): 2527-2537.
10 Wang W, Wang M, Guo X, et al. Effect of tensile frequency on the osteogenic differentiation of perio-dontal ligament stem cells[J]. Int J Gen Med, 2022, 15: 5957-5971.
11 Wang J, Yang H, Ma X, et al. LRP6/filamentous-actin signaling facilitates osteogenic commitment in mechanically induced periodontal ligament stem cells[J]. Cell Mol Biol Lett, 2023, 28(1): 7.
12 Li Z, Wu Z, Xi X, et al. Cellular communication network factor 1 interlinks autophagy and ERK signa-ling to promote osteogenesis of periodontal ligament stem cells[J]. J Periodontal Res, 2022, 57(6): 1169-1182.
13 罗金英. Gli1在人牙周膜干细胞应力成骨过程中的调控作用[D]. 重庆: 第三军医大学, 2015.
Luo JY. Regulation of Gli1 on stress osteogenesis of human periodontal stem cells[D].Chongqing: the Third Military Medical University, 2015.
14 Xu L, Wang C, Li Y, et al. ANGPTL4 regulates the osteogenic differentiation of periodontal ligament stem cells[J]. Funct Integr Genomics, 2022, 22(5): 769-781.
15 Meng XM, Wang WJ, Wang XL. MicroRNA-34a and microRNA-146a target CELF3 and suppress the osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch[J]. J Dent Sci, 2022, 17(3): 1281-1291.
16 Qin QY, Yang HQ, Zhang C, et al. lncRNA HHIP-AS1 promotes the osteogenic differentiation potential and inhibits the migration ability of periodontal ligament stem cells[J]. Stem Cells Int, 2021, 2021: 5595580.
17 刘梦珺. MiR-503-5p在正畸大鼠牵张侧牙槽骨的表达及对骨形成的作用[D].济南: 山东大学, 2017.
Liu MJ. The expression and roles of miR-503-5p in bone formation under orthodontic mechanical strain in rats[D]. Jinan: Shandong University, 2017.
18 Kanzaki H, Wada S, Yamaguchi Y, et al. Compression and tension variably alter osteoprotegerin expression via miR-3198 in periodontal ligament cells[J]. BMC Mol Cell Biol, 2019, 20(1): 6.
19 Wang H, Feng C, Jin Y, et al. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019, 234(7): 10166-10177.
20 Sun YQ, Fu JF, Lin FR, et al. Force-induced nitric oxide promotes osteogenic activity during orthodontic tooth movement in mice[J]. Stem Cells Int, 2022, 2022: 4775445.
21 Zheng JY, Xu BW, Yang K. Autophagy regulates osteogenic differentiation of human periodontal ligament stem cells induced by orthodontic tension[J]. Stem Cells Int, 2022, 2022: 2983862.
22 Mizoguchi T, Ono N. The diverse origin of bone-forming osteoblasts[J]. J Bone Miner Res, 2021, 36(8): 1432-1447.
23 Ei Hsu Hlaing E, Ishihara Y, Odagaki N, et al. The expression and regulation of Wnt1 in tooth movement-initiated mechanotransduction[J]. Am J Orthod Dentofac Orthop, 2020, 158(6): e151-e160.
24 Xu J, Lin Y, Tian M, et al. Periodontal ligament stem cell-derived extracellular vesicles enhance tension-induced osteogenesis[J]. ACS Biomater Sci Eng, 2023, 9(1): 388-398.
25 Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease[J]. Front Immunol, 2022, 13: 998244.
26 Lv PY, Gao PF, Tian GJ, et al. Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/AKT signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1): 295.
27 Men Y, Wang YH, Yi YT, et al. Gli1+ periodontium stem cells are regulated by osteocytes and occlusal force[J]. Dev Cell, 2020, 54(5): 639-654.e6.
28 Chalazias A, Plemmenos G, Evangeliou E, et al. The pivotal role of transient receptor potential channels in oral physiology[J]. Curr Med Chem, 2022, 29(8): 1408-1425.
29 Jin SS, He DQ, Wang Y, et al. Mechanical force modulates periodontal ligament stem cell characte-ristics during bone remodelling via TRPV4[J]. Cell Prolif, 2020, 53(10): e12912.
30 Mandl P, Hayer S, Karonitsch T, et al. Nicotinic acetylcholine receptors modulate osteoclastogenesis[J]. Arthritis Res Ther, 2016, 18: 63.
31 Wu L, Zhou Y, Zhou Z, et al. Nicotine induces the production of IL-1β and IL-8 via the α7 nAChR/NF-κB pathway in human periodontal ligament cells: an in vitro study[J]. Cell Physiol Biochem, 2014, 34(2): 423-431.
32 Chen YJ, Yang K, Zhou ZF, et al. Mechanical stress modulates the RANKL/OPG system of periodontal ligament stem cells via a7 nAChR in human deci-duous teeth: an in vitro study[J]. Stem Cells Int, 2019, 2019: 5326341.
33 Boppart MD, Mahmassani ZS. Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy[J]. Am J Physiol Cell Physiol, 2019, 317(4): C629-C641.
34 Li Y, Zhan Q, Bao MY, et al. Biomechanical and bio-logical responses of periodontium in orthodontic tooth movement: up-date in a new decade[J]. Int J Oral Sci, 2021, 13(1): 20.
35 Kim SJ, Park KH, Park YG, et al. Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-α expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway[J]. Arch Oral Biol, 2013, 58(6): 707-716.
36 朱庆党, 巢永烈, 陈新民, 等. 机械应力对人牙周膜成纤维细胞整合素β1 mRNA表达的调节[J]. 华西口腔医学杂志, 2008, 26(2): 194-197.
Zhu QD, Chao YL, Chen XM, et al. Regulation of integrin beta1 mRNA expression by mechanical stress in human periodontal ligament fibroblasts[J]. West China J Stomatology, 2008, 26(2): 194-197.
37 Bozkaya E, Canigur Bavbek N, Isler SC, et al. Eva-luation of heat shock protein 70 and toll-like receptor 4 expression in gingival crevicular fluid in response to orthodontic forces[J]. Clin Oral Investig, 2021, 25(11): 6455-6464.
38 Marciniak J, Lossdörfer S, Knaup I, et al. Orthodontic cell stress modifies proinflammatory cytokine expression in human PDL cells and induces immunomodulatory effects via TLR-4 signaling in vitro [J]. Clin Oral Investig, 2020, 24(4): 1411-1419.
39 Johnson CD, Fischer D, Smith IM, et al. Hyperglycemic conditions enhance the mechanosensitivity of proinflammatory RAW264.7 macrophages[J]. Tissue Eng Part A, 2023, 29(5/6): 172-184.
40 Wang Y, Li Q, Liu F, et al. Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response[J]. Int J Oral Sci, 2018, 10(3): 27.
41 Westhrin M, Moen SH, Holien T, et al. Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease[J]. Haematologica, 2015, 100(12): e511-e514.
42 Li S, Li Q, Zhu Y, et al. GDF15 induced by compressive force contributes to osteoclast differentiation in human periodontal ligament cells[J]. Exp Cell Res, 2020, 387(1): 111745.
43 Symmank J, Zimmermann S, Goldschmitt J, et al. Mechanically-induced GDF15 secretion by perio-dontal ligament fibroblasts regulates osteogenic transcription[J]. Sci Rep, 2019, 9(1): 11516.
44 Li Q, Zhang JY, Liu DW, et al. Force-induced decline of FOXM1 in human periodontal ligament cells contributes to osteoclast differentiation[J]. Angle Orthod, 2019, 89(5): 804-811.
45 Li Q, Han GF, Liu DW, et al. Force-induced decline of TEA domain family member 1 contributes to osteoclastogenesis via regulation of osteoprotegerin[J]. Arch Oral Biol, 2019, 100: 23-32.
46 Zhao M, Ma Q, Zhao Z, et al. Periodontal ligament fibroblast-derived exosomes induced by compressive force promote macrophage M1 polarization via Yes-associated protein[J]. Arch Oral Biol, 2021, 132: 105263.
47 Kapoor P, Chowdhry A, Bagga DK, et al. Micro-RNAs in oral fluids (saliva and gingival crevicular fluid) as biomarkers in orthodontics: systematic review and integrated bioinformatic analysis[J]. Prog Orthod, 2021, 22(1): 31.
48 Liu WJ, Li ZF, Cai ZP, et al. LncRNA-mRNA expression profiles and functional networks in osteoclast differentiation[J]. J Cell Mol Med, 2020, 24(17): 9786-9797.
49 Huang YP, Liu H, Guo RZ, et al. Long non-coding RNA FER1L4 mediates the autophagy of periodontal ligament stem cells under orthodontic compressive force via AKT/FOXO3 pathway[J]. Front Cell Dev Biol, 2021, 9: 631181.
50 Zhang XG, Zhao YL, Zhao ZH, et al. Knockdown of DANCR reduces osteoclastogenesis and root resorption induced by compression force via Jagged1[J]. Cell Cycle Georget Tex, 2019, 18(15): 1759-1769.
51 Liu F, Wen F, He D, et al. Force-induced H2S by PDLSCs modifies osteoclastic activity during tooth movement[J]. J Dent Res, 2017, 96(6): 694-702.
52 He DQ, Liu FL, Cui SJ, et al. Mechanical load- induced H2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1[J]. Stem Cell Res Ther, 2020, 11(1): 112.
53 Huang HM, Han CS, Cui SJ, et al. Mechanical force-promoted osteoclastic differentiation via pe-riodontal ligament stem cell exosomal protein ANXA3[J]. Stem Cell Rep, 2022, 17(8): 1842-1858.
54 Jiang N, He D, Ma Y, et al. Force-induced autophagy in periodontal ligament stem cells modulates M1 macrophage polarization via AKT signaling[J]. Front Cell Dev Biol, 2021, 9: 666631.
55 Jiang LP, Tang Z. Expression and regulation of the ERK1/2 and p38 MAPK signaling pathways in pe-riodontal tissue remodeling of orthodontic tooth movement[J]. Mol Med Rep, 2018, 17(1): 1499-1506.
56 Kirschneck C, Küchler EC, Wolf M, et al. Effects of the highly COX-2-selective analgesic NSAID etoricoxib on human periodontal ligament fibroblasts during compressive orthodontic mechanical strain[J]. Mediators Inflamm, 2019, 2019: 2514956.
57 黄瑾, 刘建国, 宋琦, 等. 血小板衍生生长因子-BB、转化生长因子-β1联合应用对大鼠正畸牙牙周膜中整合素β3表达的影响[J]. 华西口腔医学杂志, 2014, 32(4): 413-417.
Huang J, Liu JG, Song Q, et al. Synergistic effect of platelet-derived growth factor-BB and transforming growth factor-beta1, on expression of integrin beta3 in periodontal membrane of rat orthodontic tooth[J]. West China J Stomatology, 2014, 32(4): 413-417.
58 Palioto DB, Coletta RD, Graner E, et al. The inf-luence of enamel matrix derivative associated with insulin-like growth factor‑ Ⅰ on periodontal ligament fibroblasts[J]. J Periodontol, 2004, 75(4): 498-504.
59 Manokawinchoke J, Sumrejkanchanakij P, Pavasant P, et al. Notch signaling participates in TGF-β-induced SOST expression under intermittent compressive stress[J]. J Cell Physiol, 2017, 232(8): 2221-2230.
60 Kim BJ, Lee YS, Lee SY, et al. Afamin stimulates osteoclastogenesis and bone resorption via Gi-coupled receptor and Ca2+/calmodulin-dependent protein kinase (CaMK) pathways[J]. J Endocrinol Investig, 2013, 36(10): 876-882.
61 Li Y, Zheng W, Liu JS, et al. Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression[J]. J Dent Res, 2011, 90(1): 115-120.
62 Jianru YI, MeiLe LI, Yang Y, et al. Static compression regulates OPG expression in periodontal ligament cells via the CAMK Ⅱ pathway[J]. J Appl Oral Sci, 2015, 23(6): 549-554.
63 Jin Y, Li J, Wang YT, et al. Functional role of mecha-nosensitive ion channel Piezo1 in human periodontal ligament cells[J]. Angle Orthod, 2015, 85(1): 87-94.
64 Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation[J]. Mol Cells, 2017, 40(10): 706-713.
65 Watanabe T, Yasue A, Fujihara S, et al. PERIOSTIN regulates MMP-2 expression via the αvβ3 integrin/ERK pathway in human periodontal ligament cells[J]. Arch Oral Biol, 2012, 57(1): 52-59.
66 Mao Y, Wang L, Zhu Y, et al. Tension force-induced bone formation in orthodontic tooth movement via modulation of the GSK-3β/β-catenin signaling pathway[J]. J Mol Histol, 2018, 49(1): 75-84.
67 Wongkhantee S, Yongchaitrakul T, Pavasant P. Mechanical stress induces osteopontin expression in human periodontal ligament cells through rho kinase[J]. J Periodontol, 2007, 78(6): 1113-1119.
68 Premaraj S, Souza I, Premaraj T. Mechanical loa-ding activates β-catenin signaling in periodontal li-gament cells[J]. Angle Orthod, 2011, 81(4): 592-599.
69 Fu HD, Wang BK, Wan ZQ, et al. Wnt5a mediated canonical Wnt signaling pathway activation in ortho-dontic tooth movement: possible role in the tension force-induced bone formation[J]. J Mol Histol, 2016, 47(5): 455-466.
70 Zhang L, Liu W, Zhao J, et al. Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/β-catenin pathway[J]. Biochim Biophys Acta, 2016, 1860(10): 2211-2219.
71 Behm C, Zhao Z, Andrukhov O. Immunomodulatory activities of periodontal ligament stem cells in orthodontic forces-induced inflammatory processes: current views and future perspectives[J]. Front Oral Health, 2022, 3: 877348.
72 Lin JY, Huang JC, Zhang ZQ, et al. Periodontal ligament cells under mechanical force regulate local immune homeostasis by modulating Th17/Treg cell differentiation[J]. Clin Oral Investig, 2022, 26(4): 3747-3764.
73 Kook SH, Jang YS, Lee JC. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-media-ted activation of CD4+ T cells[J]. J Cell Biochem, 2011, 112(10): 2891-2901.
74 Yan Y, Liu F, Kou X, et al. T cells are required for orthodontic tooth movement[J]. J Dent Res, 2015, 94(10): 1463-1470.
75 Wolf M, Lossdörfer S, al RCraveiroet. Regulation of macrophage migration and activity by high-mobility group box 1 protein released from periodontal ligament cells during orthodontically induced perio-dontal repair: an in vitro and in vivo experimental study[J]. J Orofac Orthop, 2013, 74(5): 420-434.
76 申琳. 静压力作用下牙周膜干细胞介导大鼠T淋巴细胞凋亡的研究[D]. 西安: 第四军医大学, 2016.
Shen L. The study of PDLSCs-mediated T cell apoptosis under the static pressure[D]. Xi’an: The Fourth Military Medical University, 2016.
77 Manokawinchoke J, Chareonvit S, Trachoo V, et al. Intermittent compressive force regulates dentin matrix protein 1 expression in human periodontal ligament stem cells[J]. J Dent Sci, 2023, 18(1): 105-111.
78 Şen S, Erber R. Neuronal guidance molecules in bone remodeling and orthodontic tooth movement[J]. Int J Mol Sci, 2022, 23(17): 10077.
79 Zhang M, Yu Y, He D, et al. Neural regulation of alveolar bone remodeling and periodontal ligament metabolism during orthodontic tooth movement in response to therapeutic loading[J]. J World Fed Orthod, 2022, 11(5): 139-145.
80 Cao H, Kou X, Yang R, et al. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement[J]. J Dent Res, 2014, 93(11): 1163-1169.
81 Lee HJ, Jeong GS, Pi SH, et al. Heme oxygenase-1 protects human periodontal ligament cells against substance P-induced RANKL expression[J]. J Perio-dontal Res, 2010, 45(3): 367-374.
82 Sanz M, Marco del Castillo A, Jepsen S, et al. Perio-dontitis and cardiovascular diseases: consensus report[J]. J Clin Periodontol, 2020, 47(3): 268-288.
83 Li LY, Liu WJ, Wang H, et al. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions[J]. Cell Death Dis, 2018, 9(5): 480.
84 Liu J, Zhao Y, Niu QN, et al. Long noncoding RNA expression profiles of periodontal ligament stem cells from the periodontitis microenvironment in response to static mechanical strain[J]. Stem Cells Int, 2021, 2021: 6655526.
85 Sun WF, Liu J, Zhang X, et al. Long noncoding RNA and mRNA m6A modification analyses of periodontal ligament stem cells from the periodontitis microenvironment exposed to static mechanical strain[J]. Stem Cells Int, 2022, 2022: 6243004.
86 Andrukhov O, Behm C, Blufstein A, et al. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: implication in disease and tissue regeneration[J]. World J Stem Cells, 2019, 11(9): 604-617.
87 An Y, Liu WJ, Xue P, et al. Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion[J]. Cell Death Dis, 2018, 9(2): 58.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Yu Yuelin,Kong Weidong. Research progress on the association between primary failure of tooth eruption and parathyroid hormone receptor 1 gene [J]. Int J Stomatol, 2023, 50(5): 573-580.
[3] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[4] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[5] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[6] An Ning,Li Jiao,Mei Zhidan. Research progress on the osteoprotegerin/receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand signaling pathway of tooth eruption [J]. Int J Stomatol, 2022, 49(1): 116-120.
[7] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[8] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[9] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[10] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[11] Fu Shijin,Zeng Kan,Li Xin,Yang Jing,Wang Chenglin,Ye Ling. Preliminary study on osteoprotegerin/receptor activator of nuclear factor-κB ligand expression in mandible and femur on site selectivity of bone metastasis of lung cancer cells [J]. Int J Stomatol, 2020, 47(5): 538-546.
[12] Sun Jianwei,Lei Lihong,Tan Jingyi,Chen Lili. Regulation of osteoimmunology by MicroRNA 155 and research progress of its possible mechanism in periodontitis [J]. Int J Stomatol, 2020, 47(5): 607-615.
[13] Yang Peipei,Yang Yuchen,Zhang Qiang. Advances in the mechanism and effect of nicotine on alveolar osteoclasts [J]. Int J Stomatol, 2020, 47(5): 616-620.
[14] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[15] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .