Int J Stomatol ›› 2020, Vol. 47 ›› Issue (6): 677-685.doi: 10.7518/gjkq.2020073

• Reviews • Previous Articles     Next Articles

Research progress on 3D printing technology and biomaterials for bone reconstruction in maxillofacial regions

Zhang Xinchi1(),Wu Wei2()   

  1. 1. Basic Medical College of Air Force Medical University of PLA, Xi’an 710032, China
    2. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, Hospital of Stomatology, Air Force Medical University of PLA, Xi’an 710032, China
  • Received:2019-11-13 Revised:2020-05-19 Online:2020-11-01 Published:2020-11-06
  • Contact: Wei Wu E-mail:784788489@qq.com;wuweidds@126.com
  • Supported by:
    National Natural Science Foundation of China(81771040)

Abstract:

Maxillofacial bone defect reconstruction remains a critical challenge in clinical surgery. With the advantages of rapid prototyping, accurate design and personalisation, 3D printing technology plays an important role in the manufacturing, processing, treatment program design rehearsal and preoperative fabrication of substitutes. Bone replacement with good mechanical properties and biocompatibility could be acquired using different materials and manufacturing techniques for maxillofacial reconstruction. 3D printing technology allows the use of additional biological materials and promotes the scaffolding preparation for tissue-engineered bones. In this paper, the current research and development of 3D printing materials applied in maxillofacial bone defects at home and abroad were summarised, and the developing trend of 3D printing technology was prospected.

Key words: 3D printing, bone materials, maxillofacial defects, restoration

CLC Number: 

  • R782.2+4

TrendMD: 
[1] 李小丽, 马剑雄, 李萍, 等. 3D打印技术及应用趋势[J]. 自动化仪表, 2014,35(1):1-5.
Li XL, Ma JX, Li P, et al. 3D printing technology and its application trend[J]. Process Autom Instrum, 2014,35(1):1-5.
[2] Smith BT, Shum J, Wong M, et al. Bone tissue en-gineering challenges in oral & maxillofacial surgery[J]. Adv Exp Med Biol, 2015,881:57-78.
doi: 10.1007/978-3-319-22345-2_4 pmid: 26545744
[3] Liu YF, Xu LW, Zhu HY, et al. Technical procedures for template-guided surgery for mandibular recons-truction based on digital design and manufacturing[J]. Biomed Eng Online, 2014,13:63.
doi: 10.1186/1475-925X-13-63 pmid: 24886431
[4] 党莹, 李月, 李瑞玉, 等. 骨组织工程支架材料在骨缺损修复及3D打印技术中的应用[J]. 中国组织工程研究, 2017,21(14):2266-2273.
Dang Y, Li Y, Li RY, et al. Three-dimensional prin-ting technology preparation of bone tissue engine-ering scaffold materials in bone defect repair[J]. Chin J Tissue Eng Res, 2017,21(14):2266-2273.
[5] 阮建明, 邹俭鹏, 黄伯云, 等. 生物材料学[M]. 北京: 科学出版社, 2004.
Ran JM, Zou JP, Huang BY, et al. Biomaterials[M]. Beijing: Science Press, 2004.
[6] Chanchareonsook N, Tideman H, Lee S, et al. Man-dibular reconstruction with a bioactive-coated cem-entless Ti6Al4V modular endoprosjournal in Macaca fascicularis[J]. Int J Oral Maxillofac Surg, 2014,43(6):758-768.
pmid: 24507820
[7] 沈霖, 林燕萍, 王拥军. 骨伤科实验研究[M]. 北京: 北京科学技术出版社, 2005.
Shen L, Lin YP, Wang YJ. Experimental study on orthopedics[M]. Beijing: Beijing Science and Te-chnology Press, 2005.
[8] 王亮, 郭玉兴, 黄华, 等. 颌骨缺损修复用多孔镁合金支架材料的生物安全性评价研究[J]. 中国组织工程研究, 2019,23(26):4121-4128.
Wang L, Guo YX, Huang H, et al. Evaluation of biosafety of porous magnesium alloy scaffolds for jaw defects[J]. Chin J Tissue Eng Res, 2019,23(26):4121-4128.
[9] 阮建明, 叶雷, 谢健全, 等. 医用金属植入材料多孔铌及制备方法: 中国, CN201010186291.X[P]. 2011-11-30.
Ran JM, Ye L, Xie JQ, et al. Porous niobium and its preparation method: China, CN201010186291.X[P]. 2011-11-30.
[10] Ikumi R, Miyahara T, Akino N, et al. Guided bone regeneration using a hydrophilic membrane made of unsintered hydroxyapatite and poly(L-lactic acid) in a rat bone-defect model[J]. Dent Mater J, 2018,37(6):912-918.
pmid: 29962416
[11] 张海峰, 杜子婧, 毛曦媛, 等. 3D打印PLA-HA复合材料构建组织工程骨的实验研究[J]. 国际骨科学杂志, 2016,37(1):57-63.
Zhang HF, Du ZJ, Mao XY, et al. Experimental re-serarch of constructing tissue engineered bone using three-dimensional printed polylactic acid-hydroxya-patite composite scaffolds[J]. Int J Orthop, 2016,37(1):57-63.
[12] 陈智谦, 穆雄铮. 颅骨缺损修补材料应用的Meta分析[J]. 中国组织工程研究, 2018,22(30):4913-4920.
Chen ZQ, Mu XZ. A meta-analysis of repair mate-rials used in cranioplasty[J]. Chin J Tissue Eng Res, 2018,22(30):4913-4920.
[13] 向声燚, 焦志伟, 马昊鹏, 等. 聚己内酯/纳米羟基磷灰石复合材料的3D打印及性能[J]. 工程塑料应用, 2018,46(8):122-125, 130.
Xiang SY, Jiao ZW, Ma HP, et al. 3D printing and properties of PCL/nano-HA composites[J]. Eng Plast Appl, 2018,46(8):122-125, 130.
[14] Foletti JM, Lari N, Dumas P, et al. PEEK customized implant for skull esthetic reconstruction[J]. Rev Stomatol Chir Maxillofac, 2012,113(6):468-471.
doi: 10.1016/j.stomax.2012.07.008 pmid: 23182690
[15] 林柳兰, 周建勇. 3D打印聚醚醚酮及其复合材料修复骨缺损的应用现况[J]. 中国组织工程研究, 2020,24(10):1622-1628.
Lin LL, Zhou JY. Application status of 3D printed polyetheretherketone and its composite in bone def-ect repair[J]. Chin J Tissue Eng Res, 2020,24(10):1622-1628.
[16] Li QY, Zhang YX, Wang D, et al. Porous polyether ether ketone: a candidate for hard tissue implant materials[J]. Mater Des, 2017,116:171-175.
[17] 穆苍山, 靳欢, 金永健, 等. 3D打印聚醚醚酮修补材料在颅骨缺损修补手术中的应用效果分析[J]. 航空航天医学杂志, 2019,30(7):774-776.
Mu CS, Jin H, Jin YJ, et al. Analysis of the applica-tion effect of 3D-printed polyether ketone repair material in cranial defect repair surgery[J]. J Aerosp Med, 2019,30(7):774-776.
[18] Scolozzi P. Maxillofacial reconstruction using polyetheretherketone patient-specific implants by “mirroring” computational planning[J]. Aesthetic Plast Surg, 2012,36(3):660-665.
doi: 10.1007/s00266-011-9853-2 pmid: 22258832
[19] 陈小文. 快速成型光固化树脂体系的研究[D]. 广州: 华南理工大学, 2011.
Chen XW. Study on photocurable resins used in stereolithography[D]. Guangzhou: South China University of Technology, 2011.
[20] 胡敏, 谭新颖, 鄢荣曾, 等. 3D打印技术在口腔颌面外科领域中的应用进展[J]. 中国实用口腔科杂志, 2014,7(6):335-339.
Hu M, Tan XY, Yan RZ, et al. Application progress of 3D printing technology in the field of oral and maxillofacial surgery[J]. Chin J Pract Stomatol, 2014,7(6):335-339.
[21] Ciocca L, De Crescenzio F, Fantini M, et al. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study[J]. Comput Med Ima-ging Graph, 2009,33(1):58-62.
[22] Smeets R, Barbeck M, Hanken, et al. Selective laser-melted fully biodegradable scaffold composed of poly(D,L-lactide) and β-tricalcium phosphate with potential as a biodegradable implant for complex maxillofacial reconstruction: in vitro and in vivo results[J]. J Biomed Mater Res Part B Appl Biomater, 2017,105(5):1216-1231.
[23] Li JH, Hsu Y, Luo E, et al. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy[J]. Aesthetic Plast Surg, 2011,35(4):636-640.
doi: 10.1007/s00266-010-9602-y pmid: 20972567
[24] 史舒雅, 陈亚明. 生物活性玻璃在口腔医学中的应用[J]. 口腔生物医学, 2013,4(1):44-47.
Shi SY, Chen YM. Application of bioactive glass in stomatology[J]. Oral Biomed, 2013,4(1):44-47.
[25] 王晶晶, 施亮, 徐婧, 等. 溶胶凝胶微纳米生物活性玻璃对恒河猴牙槽骨缺损的修复作用[J]. 广东医学, 2016,37(11):1610-1612.
Wang JJ, Shi L, Xu J, et al. Repair of alveolar bone defects in Ganges River monkeys by sol gel mi-cronano bioactive glass[J]. Guangdong Med J, 2016,37(11):1610-1612.
[26] Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprin-ting of collagen to rebuild components of the human heart[J]. Science, 2019,365(6452):482-487.
pmid: 31371612
[27] Hynes RO. Integrins: bidirectional, allosteric signa-ling machines[J]. Cell, 2002,110(6):673-687.
pmid: 12297042
[28] Kang HJ, Peng J, Lu SB, et al. In vivo cartilage repair using adipose-derived stem cell-loaded de-cellularized cartilage ECM scaffolds[J]. J Tissue Eng Regen Med, 2014,8(6):442-453.
doi: 10.1002/term.v8.6
[29] Ma XY, Yu C, Wang PR, et al. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microar-chitecture[J]. Biomaterials, 2018,185:310-321.
doi: 10.1016/j.biomaterials.2018.09.026 pmid: 30265900
[30] Xu YY, Guo X, Yang ST, et al. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen te-chnology[J]. J Biomed Mater Res A, 2018,106(6):1664-1676.
doi: 10.1002/jbm.a.36368 pmid: 29460433
[31] Yang Q, Teng BH, Wang LN, et al. Silk fibroin/carti-lage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells[J]. Int J Nanomedicine, 2017,12:6721-6733.
doi: 10.2147/IJN.S141888 pmid: 28932116
[32] Lin KF, He S, Song Y, et al. Low-temperature additive manufacturing of biomimic three-dimensional hy-droxyapatite/collagen scaffolds for bone regeneration[J]. ACS Appl Mater Interfaces, 2016,8(11):6905-6916.
doi: 10.1021/acsami.6b00815 pmid: 26930140
[33] Yang Y, Lei D, Huang SX, et al. Elastic 3D-printed hybrid polymeric scaffold improves cardiac remo-deling after myocardial infarction[J]. Adv Healthc Mater, 2019,8(10):e1900065.
pmid: 30941925
[34] 邹运, 韩青, 徐晓麟, 等. 骨科和口腔颌面外科3D打印模型的精度验证和可靠性分析[J]. 吉林大学学报(医学版), 2017,43(5):996-1001, 1074.
Zou Y, Han Q, Xu XL, et al. Accuracy verification and reliability analysis of three-dimensional printing model in orthopedics and maxillofacial surgery[J]. J Jilin Univ Med Ed, 2017,43(5):996-1001, 1074.
[35] 丁冉, 吴志宏, 邱贵兴, 等. 选择性激光烧结技术的多孔钛合金支架的骨组织工程学观察[J]. 中华医学杂志, 2014,94(19):1499-1502.
Ding R, Wu ZH, Qiu GX, et al. Selective laser sinte-ring-produced porous titanium ahoy scaffold for bone tissue engineering[J]. Nat Med J China, 2014,94(19):1499-1502.
[36] 曾浩, 王敏, 陈冬, 等. 选择性激光烧结技术制作的双相磷酸钙骨组织工程支架的工艺和生物学性能[J]. 口腔医学研究, 2018,34(2):165-168.
Zeng H, Wang M, Chen D, et al. Preparation of biphasic calcium phosphate scaffolds for bone tissue engineering by selective laser sintering[J]. J Oral Sci Res, 2018,34(2):165-168.
[37] 刘许, 宋阳. 用于3D打印的生物相容性高分子材料[J]. 合成树脂及塑料, 2015,32(4):96-99, 102.
Liu X, Song Y. Biodegradable polymer material for three-dimensional printing technology[J]. China Synth Resin Plast, 2015,32(4):96-99, 102.
[38] 葛建华, 王迎军, 闵少雄. 含乙二醇-乳酸共聚物的聚乳酸组织工程支架体内外降解和生物矿化性能研究[J]. 生物医学工程学杂志, 2010,27(5):1070-1075.
Ge JH, Wang YJ, Min SX. Degradable performance and bio-mineralization function of PLA-PEG-PLA/PLA tissue engineering scaffold in vitro and in vivo[J]. J Biomed Eng, 2010,27(5):1070-1075.
[39] Li SJ, Yan YN, Xiong Z, et al. Gradient hydrogel construct based on an improved cell assembling system[J]. J Bioact Compatible Polym, 2009,24(1_suppl):84-99.
[40] Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques[J]. J Funct Biomater, 2018,9(1):E17.
[41] 李俊达, 陈美霖, 韦晓英, 等. 覆盖富血小板血浆3D打印聚己内酯支架对牙髓细胞体外生物学行为的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2017,11(3):149-156.
Li JD, Chen ML, Wei XY, et al. The influence of 3D-printed polycaprolactone scaffolds coated with platelet-rich plasma on the biological functions of dental pulp cells[J/OL]. Chin J Stomatol Res (Elec-tron Ed), 2017,11(3):149-156.
[42] Barry RA Ⅲ, Shepherd RF, Hanson JN, et al. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth[J]. Adv Mater, 2009,21(23):2407-2410.
[43] Cubo N, Garcia M, Del Cañizo JF, et al. 3D bioprinting of functional human skin: production and in vivo analysis[J]. Biofabrication, 2016,9(1):015006.
doi: 10.1088/1758-5090/9/1/015006 pmid: 27917823
[44] Kolesky DB, Homan KA, Skylar-Scott MA, et al. Three-dimensional bioprinting of thick vascularized tissues[J]. Proc Natl Acad Sci U S A, 2016,113(12):3179-3184.
doi: 10.1073/pnas.1521342113 pmid: 26951646
[45] Wu JT, Yuan C, Ding Z, et al. Multi-shape active composites by 3D printing of digital shape memory polymers[J]. Sci Rep, 2016,6:24224.
pmid: 27071543
[1] Tang Chunbo. Restorative space in edentulous patients and the clinical decision of implant restoration [J]. Int J Stomatol, 2024, 51(1): 1-9.
[2] Yashengjiang Muhesen,Tuerdi Maimaitituxun. Application of suture anchor in oral and maxillofacial surgery [J]. Int J Stomatol, 2023, 50(1): 114-119.
[3] Ma Jianbin,Xue Chaoran,Wang Peiqi,Li Bin,Bai Ding.. Effect of 3D printing orthognathic surgical splints with different dental model offsets on occlusal precision [J]. Int J Stomatol, 2022, 49(3): 296-304.
[4] Shen Dongni,Shi Ying,Fu Baiping. Research progress on posterior occlusal veneer [J]. Int J Stomatol, 2021, 48(3): 287-291.
[5] Lu Boyao,Yang Dawei,Liu Weiqing,Liang Xing. Influencing factors of the clinical application effect of ultrashort implant [J]. Int J Stomatol, 2021, 48(3): 329-328.
[6] Chen Chen,Tian Yuting,Cheng Li,Wang Guosong,Hu Tao. Consideration and prospect of the timing for permanent restoration of children's first permanent molar with large area defects [J]. Int J Stomatol, 2021, 48(2): 129-134.
[7] Liu Chunxu,Lu Yuqing,Jia Luming,Dong Bo,Zhang Qianqian,Yu Haiyang. Comparative study of the retention force of titanium-alloy clasps fabricated through selective laser melting and casting [J]. Int J Stomatol, 2020, 47(2): 152-158.
[8] Zhang Tingting,Hu Changhong,Peng Yan,Zhou Wenqiao,Zhang Huicong,Liu Die. Analysis of upper lip profile features in 300 dentate subjects of different ages via three-dimensional measurement of cone beam computed tomography [J]. Int J Stomatol, 2020, 47(2): 182-188.
[9] Wang Jian,Zhang Xin. One case of socket shield technique for immediate implantation [J]. Int J Stomatol, 2020, 47(1): 10-16.
[10] Yuting Han,Yanru Wu. Research progress on deep margin elevation in tooth defect restorations [J]. Int J Stomatol, 2019, 46(3): 349-355.
[11] Chang-hong Hu. A concept of returning to the therapeutic nature in treatment and restoration of the edentulous cases [J]. Inter J Stomatol, 2018, 45(6): 621-627.
[12] Xue Du,Fang Qu,Weicai Liu. Establishment of a three-dimensional virtual dental patient and its application in esthetic restoration [J]. Inter J Stomatol, 2018, 45(6): 695-702.
[13] Huang Haixia, Lan Yuyan, Zhang Hao, Pan Lanlan, Guo Ling, Liu Min. Changes on periodontal index and inflammatory factor levels in gingival crevicular fluid after implant restoration in patients with chronic periodontitis [J]. Inter J Stomatol, 2018, 45(4): 396-402.
[14] Wang Ke, Xiang Tao, Tang Yaling, Liang Xinhua. Application of 3D printing in oral and maxillofacial surgery education [J]. Inter J Stomatol, 2018, 45(1): 119-124.
[15] Ma Quanquan, Cai Xiaoxiao.. Current status of immediate implant placement and provisionalization in esthetics zone [J]. Inter J Stomatol, 2017, 44(6): 731-736.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .