Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 296-304.doi: 10.7518/gjkq.2022061
• Original Articles • Previous Articles Next Articles
Ma Jianbin(),Xue Chaoran,Wang Peiqi,Li Bin,Bai Ding.()
CLC Number:
1 | Lin HH, Lonic D, Lo LJ. 3D printing in orthognathic surgery-a literature review[J]. J Formos Med Assoc, 2018, 117(7): 547-558. |
2 | Sun Y, Luebbers HT, Agbaje JO, et al. Accuracy of upper jaw positioning with intermediate splint fabrication after virtual planning in bimaxillary orthognathic surgery[J]. J Craniofacial Surg, 2013, 24(6): 1871-1876. |
3 | 李运峰, 祝颂松. 数字化技术在牙颌面畸形诊疗中的应用[J]. 口腔疾病防治, 2019, 27(2): 74-82. |
Li YF, Zhu SS. Application of digital technology in diagnosis and treatment of dentofacial deformities[J]. J Prev Treat Stomatol Dis, 2019, 27(2): 74-82. | |
4 | Chen X, Xu L, Wang W, et al. Computer-aided design and manufacturing of surgical templates and their clinical applications: a review[J]. Expert Rev Med Devices, 2016, 13(9): 853-864. |
5 | Lin YP, Zhang SL, Chen XJ, et al. A novel method in the design and fabrication of dental splints based on 3D simulation and rapid prototyping technology[J]. Int J Adv Manuf Technol, 2006, 28(9/10): 919-922. |
6 | Metzger MC, Hohlweg-Majert B, Schwarz U, et al. Manufacturing splints for orthognathic surgery using a three-dimensional printer[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 105(2): e1-e7. |
7 | Shaheen E, Sun Y, Jacobs R, et al. Three-dimensio-nal printed final occlusal splint for orthognathic surgery: design and validation[J]. Int J Oral Maxillofac Surg, 2017, 46(1): 67-71. |
8 | Kim BC, Lee CE, Park W, et al. Clinical experien-ces of digital model surgery and the rapid-prototyped wafer for maxillary orthognathic surgery[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 111(3): 278-285.e1. |
9 | Olszewski R, Reychler H. Les limites de la chirurgie des modèles en chirurgie orthognathique: implications théoriques et pratiques[J]. Revue De Stomatol et De Chir Maxillo Faciale, 2004, 105(3): 165-169. |
10 | Choi JY, Song KG, Baek SH. Virtual model surgery and wafer fabrication for orthognathic surgery[J]. Int J Oral Maxillofac Surg, 2009, 38(12): 1306-1310. |
11 | Cousley RR, Turner MJ. Digital model planning and computerized fabrication of orthognathic surgery wafers[J]. J Orthod, 2014, 41(1): 38-45. |
12 | Ghai S, Sharma Y, Jain N, et al. Use of 3-D printing technologies in craniomaxillofacial surgery: a review[J]. Oral Maxillofac Surg, 2018, 22(3): 249-259. |
13 | Jacobs CA, Lin AY. A new classification of three-dimensional printing technologies: systematic review of three-dimensional printing for patient-specific craniomaxillofacial surgery[J]. Plast Reconstr Surg, 2017, 139(5): 1211-1220. |
14 | Shehab MF, Barakat AA, AbdElghany K, et al. A novel design of a computer-generated splint for vertical repositioning of the maxilla after Le Fort Ⅰ osteotomy[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013, 115(2): e16-e25. |
15 | Kim SY, Shin YS, Jung HD, et al. Precision and trueness of dental models manufactured with diffe-rent 3-dimensional printing techniques[J]. Am J Orthod Dentofac Orthop, 2018, 153(1): 144-153. |
16 | Lauren M, McIntyre F. A new computer-assisted method for design and fabrication of occlusal splints[J]. Am J Orthod Dentofac Orthop, 2008, 133(4): S130-S135. |
17 | Song KG, Baek SH. Comparison of the accuracy of the three-dimensional virtual method and the conventional manual method for model surgery and intermediate wafer fabrication[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 107(1): 13-21. |
18 | Shqaidef A, Ayoub AF, Khambay BS. How accurate are rapid prototyped (RP) final orthognathic surgical wafers? A pilot study[J]. Br J Oral Maxillofac Surg, 2014, 52(7): 609-614. |
19 | Ye NS, Wu TT, Dong T, et al. Precision of 3D-prin-ted splints with different dental model offsets[J]. Am J Orthod Dentofac Orthop, 2019, 155(5): 733-738. |
20 | Kim SJ, Lee KJ, Yu HS, et al. Three-dimensional effect of pitch, roll, and yaw rotations on maxillomandibular complex movement[J]. J Craniomaxillofac Surg, 2015, 43(2): 264-273. |
21 | Xue C, Xu H, Tian Y, et al. Precise control of maxillary multidirectional movement in Le Fort Ⅰ osteo-tomy using a surgical guiding device[J]. Br J Oral Maxillofac Surg, 2018, 56(9): 797-804. |
22 | Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques[J]. Am J Orthod Dentofac Orthop, 2014, 145(1): 108-115. |
23 | Sherman SL, Kadioglu O, Currier GF, et al. Accuracy of digital light processing printing of 3-dimensional dental models[J]. Am J Orthod Dentofac Orthop, 2020, 157(3): 422-428. |
24 | Gateno J, Xia J, Teichgraeber JF, et al. The precision of computer-generated surgical splints[J]. J Oral Maxillofac Surg, 2003, 61(7): 814-817. |
25 | Adolphs N, Liu WC, Keeve E, et al. RapidSplint: virtual splint generation for orthognathic surgery- results of a pilot series[J]. Comput Aided Surg, 2014, 19(1/2/3): 20-28. |
26 | Elbokle N, Sultan O. The precision of 3D printed CAD/CAM occlusal splints in orthognathic surgery[J]. Egypt Dent J, 2018, 64(3): 2073-2079. |
27 | Choi JY, Choi JH, Kim NK, et al. Analysis of errors in medical rapid prototyping models[J]. Int J Oral Maxillofac Surg, 2002, 31(1): 23-32. |
28 | Winder J, Bibb R. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery[J]. J Oral Maxillofac Surg, 2005, 63(7): 1006-1015. |
29 | Dietrich CA, Ender A, Baumgartner S, et al. A validation study of reconstructed rapid prototyping mo-dels produced by two technologies[J]. Angle Orthod, 2017, 87(5): 782-787. |
30 | Vasques MT, Laganá DC. Accuracy and internal fit of 3D printed occlusal splint, according to the prin-ting position[J]. Clin Lab Res Dent, 2018. doi:10.11606/issn.2357-8041.clrd.2018.148012. |
31 | Marcel R, Reinhard H, Andreas K. Accuracy of CAD/CAM-fabricated bite splints: milling vs 3D printing[J]. Clin Oral Investig, 2020, 24(12): 4607-4615. |
32 | Unkovskiy A, Bui PHB, Schille C, et al. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of ste-reolithographically printed resin[J]. Dent Mater, 2018, 34(12): e324-e333. |
33 | Favero CS, English JD, Cozad BE, et al. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models[J]. Am J Orthod Dentofac Orthop, 2017, 152(4): 557-565. |
34 | Zhang ZC, Li PL, Chu FT, et al. Influence of the three-dimensional printing technique and printing layer thickness on model accuracy[J]. J Orofac Orthop, 2019, 80(4): 194-204. |
[1] | Zhang Xinchi,Wu Wei. Research progress on 3D printing technology and biomaterials for bone reconstruction in maxillofacial regions [J]. Int J Stomatol, 2020, 47(6): 677-685. |
[2] | Liu Chunxu,Lu Yuqing,Jia Luming,Dong Bo,Zhang Qianqian,Yu Haiyang. Comparative study of the retention force of titanium-alloy clasps fabricated through selective laser melting and casting [J]. Int J Stomatol, 2020, 47(2): 152-158. |
[3] | Wang Ke, Xiang Tao, Tang Yaling, Liang Xinhua. Application of 3D printing in oral and maxillofacial surgery education [J]. Inter J Stomatol, 2018, 45(1): 119-124. |
[4] | Wang Jing, Yuan Rongtao, Dong Qian.. Application of computer aided surgery system and 3D printing technology in the reconstruction of the defects in oral and maxillofacial region [J]. Inter J Stomatol, 2016, 43(6): 725-728. |