Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 290-295.doi: 10.7518/gjkq.2022034
• Microbiology • Previous Articles Next Articles
Liu Qianxi1(),Wu Jiayi2,Ren Biao3,Huang Ruijie1()
CLC Number:
1 | Falsetta ML, Koo H. Beyond mucosal infection: a role for C. albicans-streptococcal interactions in the pathogenesis of dental caries[J]. Curr Oral Health Rep, 2014, 1(1): 86-93. |
2 | Abisado RG, Benomar S, Klaus JR, et al. Bacterial quorum sensing and microbial community interactions[J]. mBio, 2018, 9(3): e02331-e02317. |
3 | Stubbendieck RM, Vargas-Bautista C, Straight PD. Bacterial communities: interactions to scale[J]. Front Microbiol, 2016, 7: 1234. |
4 | Colombo AV, Barbosa GM, Higashi D, et al. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with perio-dontitis and periodontal health[J]. J Med Microbiol, 2013, 62(Pt 10): 1592-1600. |
5 | Johnson EM, Flannagan SE, Sedgley CM. Coaggregation interactions between oral and endodontic Enterococcus faecalis and bacterial species isolated from persistent apical periodontitis[J]. J Endod, 2006, 32(10): 946-950. |
6 | Siqueira JF Jr, Rôças IN. Diversity of endodontic microbiota revisited[J]. J Dent Res, 2009, 88(11): 969-981. |
7 | Chávez de Paz LE, Davies JR, Bergenholtz G, et al. Strains of Enterococcus faecalis differ in their ability to coexist in biofilms with other root canal bacteria[J]. Int Endod J, 2015, 48(10): 916-925. |
8 | Gao Y, Jiang XQ, Lin DJ, et al. The starvation resistance and biofilm formation of Enterococcus faecalis in coexistence with Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus[J]. J Endod, 2016, 42(8): 1233-1238. |
9 | 龚闽, 侯本祥. 慢性根尖周炎感染根管内粪肠球菌和白色念珠菌的检测[J]. 北京口腔医学, 2012, 20(6): 310-313. |
Gong M, Hou BX. Determination of root canal microorganisms isolated from teeth with chronic apical periodontitis[J]. Beijing J Stomatol, 2012, 20(6): 310-313. | |
10 | Bertolini M, Ranjan A, Thompson A, et al. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection[J]. PLoS Pathog, 2019, 15(4): e1007717. |
11 | Krishnamoorthy AL, Lemus AA, Solomon AP, et al. Interactions between Candida albicans and Enterococcus faecalis in an organotypic oral epithelial model[J]. Microorganisms, 2020, 8(11): 1771. |
12 | Bertolini MM, Xu H, Sobue T, et al. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes[J]. Mol Oral Microbiol, 2015, 30(4): 307-322. |
13 | Shekh RM, Roy U. Biochemical characterization of an anti-Candida factor produced by Enterococcus faecalis[J]. BMC Microbiol, 2012, 12: 132. |
14 | Graham CE, Cruz MR, Garsin DA, et al. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans[J]. Proc Natl Acad Sci U S A, 2017, 114(17): 4507-4512. |
15 | Deng L, Zou L, Wu J, et al. Voriconazole inhibits cross-kingdom interactions between Candida albicans and Actinomyces viscosus through the ergoste-rol pathway[J]. Int J Antimicrob Agents, 2019, 53(6): 805-813. |
16 | Qiu W, Ren B, Dai HQ, et al. Clotrimazole and eco-nazole inhibit Streptococcus mutans biofilm and vi-rulence in vitro[J]. Arch Oral Biol, 2017, 73: 113-120. |
17 | 王峥, 周学东, 任彪. 白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究[J]. 四川大学学报(医学版), 2020, 51(6): 742-748. |
Wang Z, Zhou XD, Ren B. Ergosterol pathway of Candida albicans promotes the growth and carioge-nic virulence of Streptococcus mutans[J]. J Sichuan Univ (Med Sci Ed), 2020, 51(6): 742-748. | |
18 | Rôças IN, Hülsmann M, Siqueira JF Jr. Microorga-nisms in root canal-treated teeth from a German population[J]. J Endod, 2008, 34(8): 926-931. |
19 | Munson MA, Pitt-Ford T, Chong B, et al. Molecular and cultural analysis of the microflora associated with endodontic infections[J]. J Dent Res, 2002, 81(11): 761-766. |
20 | Deng DM, Hoogenkamp MA, Exterkate RA, et al. Influence of Streptococcus mutans on Enterococcus faecalis biofilm formation[J]. J Endod, 2009, 35(9): 1249-1252. |
21 | Li X, Hoogenkamp MA, Ling J, et al. Diversity of Streptococcus mutans strains in bacterial interspecies interactions[J]. J Basic Microbiol, 2014, 54(2): 97-103. |
22 | Jhajharia K, Parolia A, Shetty KV, et al. Biofilm in endodontics: a review[J]. J Int Soc Prev Community Dent, 2015, 5(1): 1-12. |
23 | Yonezawa H, Kuramitsu HK. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5[J]. Antimicrob Agents Chemother, 2005, 49(2): 541-548. |
24 | Fukushima H, Kelstrup J, Fukushima S, et al. Chara-cterization and mode of action of a purified bacteriocin from the oral bacterium Streptococcus mutans RM-10[J]. Arch Oral Biol, 1985, 30(3): 229-234. |
25 | Frandsen EV, Pedrazzoli V, Kilian M. Ecology of viridans streptococci in the oral cavity and pharynx[J]. Oral Microbiol Immunol, 1991, 6(3): 129-133. |
26 | Chávez de Paz L, Svensäter G, Dahlén G, et al. Streptococci from root canals in teeth with apical periodontitis receiving endodontic treatment[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 100(2): 232-241. |
27 | Schirrmeister JF, Liebenow AL, Braun G, et al. Detection and eradication of microorganisms in root-filled teeth associated with periradicular lesions: an in vivo study[J]. J Endod, 2007, 33(5): 536-540. |
28 | Vickerman MM, Flannagan SE, Jesionowski AM, et al. A genetic determinant in Streptococcus gordonii Challis encodes a peptide with activity similar to that of enterococcal sex pheromone cAM373, which facilitates intergeneric DNA transfer[J]. J Bacteriol, 2010, 192(10): 2535-2545. |
29 | Mansfield JM, Herrmann P, Jesionowski AM, et al. Streptococcus gordonii pheromone s.g.cAM373 may influence the reservoir of antibiotic resistance determinants of Enterococcus faecalis origin in the oral metagenome[J]. J Med Microbiol, 2017, 66(11): 1635-1639. |
30 | Sedgley CM, Molander A, Flannagan SE, et al. Virulence, phenotype and genotype characteristics of endodontic Enterococcus spp.[J]. Oral Microbiol Immunol, 2005, 20(1): 10-19. |
31 | Sedgley CM, Lee EH, Martin MJ, et al. Antibiotic resistance gene transfer between Streptococcus gordonii and Enterococcus faecalis in root canals of teeth ex vivo[J]. J Endod, 2008, 34(5): 570-574. |
32 | Showsh SA, De Boever EH, Clewell DB. Vancomycin resistance plasmid in Enterococcus faecalis that encodes sensitivity to a sex pheromone also produced by Staphylococcus aureus[J]. Antimicrob Ag-ents Chemother, 2001, 45(7): 2177-2178. |
33 | Vickerman MM, Mansfield JM. Streptococcal pepti-des that signal Enterococcus faecalis cells carrying the pheromone-responsive conjugative plasmid pAM-373[J]. Mol Oral Microbiol, 2019, 34(6): 254-262. |
34 | Cariati P, Cabello-Serrano A, Monsalve-Iglesias F, et al. Meningitis and subdural empyema as complication of pterygomandibular space abscess upon tooth extraction[J]. J Clin Exp Dent, 2016, 8(4): e469-e472. |
35 | Grundmann H, Aires-de-Sousa M, Boyce J, et al. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat[J]. Lancet, 2006, 368(9538): 874-885. |
36 | Klevens RM, Edwards JR, Tenover FC, et al. Chan-ges in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003[J]. Clin Infect Dis, 2006, 42(3): 389-391. |
37 | Firth N, Fink PD, Johnson L, et al. A lipoprotein signal peptide encoded by the staphylococcal conjugative plasmid pSK41 exhibits an activity resembling that of Enterococcus faecalis pheromone cAD1[J]. J Bacteriol, 1994, 176(18): 5871-5873. |
38 | Zhu WM, Clark N, Patel JB. pSK41-like plasmid is necessary for Inc18-like vanA plasmid transfer from Enterococcus faecalis to Staphylococcus aureus in vitro[J]. Antimicrob Agents Chemother, 2013, 57(1): 212-219. |
39 | Zhu WM, Murray PR, Huskins WC, et al. Dissemination of an Enterococcus Inc18-Like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2010, 54(10): 4314-4320. |
40 | Sakko M, Tjäderhane L, Rautemaa-Richardson R. Microbiology of root canal infections[J]. Prim Dent J, 2016, 5(2): 84-89. |
41 | Yoon DL, Kim S, Song H, et al. Detection of bacterial species in chronic periodontitis tissues at diffe-rent stages of disease severity[J]. J Bacteriol Virol, 2015, 45(4): 364-371. |
42 | Li XY, Zhou LM, Takai H, et al. Aggregatibacter actinomycetemcomitans lipopolysaccharide regulates bone sialoprotein gene transcription[J]. J Cell Biochem, 2012, 113(9): 2822-2834. |
43 | Im J, Baik JE, Kim KW, et al. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells[J]. Int Immunol, 2015, 27(8): 381-391. |
44 | Im J, Baik JE, Lee D, et al. Lipoteichoic acid of Enterococcus faecalis interferes with Porphyromonas gingivalis lipopolysaccharide signaling via IRAK-M upregulation in human periodontal ligament cells[J]. Mol Oral Microbiol, 2020, 35(4): 146-157. |
45 | Kim HG, Kim NR, Gim MG, et al. Lipoteichoic a-cid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice[J]. J Immunol, 2008, 180(4): 2553-2561. |
46 | Fukushima H, Kelstrup J, Fukushima S, et al. Chara-cterization and mode of action of a purified bacteriocin from the oral bacterium Streptococcus mutans RM-10[J]. Arch Oral Biol, 1985, 30(3): 229-234. |
47 | Viçosa GN, Botta C, Ferrocino I, et al. Staphylococcus aureus undergoes major transcriptional reorganization during growth with Enterococcus faecalis in milk[J]. Food Microbiol, 2018, 73: 17-28. |
48 | Nogueira Viçosa G, Vieira Botelho C, Botta C, et al. Impact of co-cultivation with Enterococcus faecalis over growth, enterotoxin production and gene expression of Staphylococcus aureus in broth and fresh cheeses[J]. Int J Food Microbiol, 2019, 308: 108291. |
49 | Jung S, Park OJ, Kim AR, et al. Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm[J]. J Microbiol, 2019, 57(4): 310-315. |
50 | Kim AR, Kang MJ, Yoo YJ, et al. Lactobacillus plantarum lipoteichoic acid disrupts mature Enterococcus faecalis biofilm[J]. J Microbiol, 2020, 58(4): 314-319. |
[1] | Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44. |
[2] | Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617. |
[3] | Yang Qianjuan,Song Zhixin,Fang Shishu,Gu Zexu,Jin Zuolin,Liu Qian. New advances in oral diseases based on salivary metabolomics [J]. Int J Stomatol, 2023, 50(3): 321-328. |
[4] | Chen Yifei,Zhang Binjing,Feng Shuqi,Xu Rui,Yang Shuxian,Li Yuqing. Effects of flavonoids on oral microorganisms and its mechanism [J]. Int J Stomatol, 2023, 50(2): 210-216. |
[5] | Yang Sirui,Ren Biao,Peng Xian,Xu Xin. Research progress on drug synergism with fluconazole in fluconazole-resistant Candida albicans [J]. Int J Stomatol, 2022, 49(5): 511-520. |
[6] | Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396. |
[7] | Xiong Kaixin,Zou Ling. Correlation between Candida albicans, Actinomyces viscosus, and root caries [J]. Int J Stomatol, 2021, 48(2): 187-191. |
[8] | Chen Jing,Ge Ziyu,Yu Tingting,Zhang Yanzhen. Research progress on the correlation between Parkinson's disease and oral diseases [J]. Int J Stomatol, 2021, 48(2): 218-224. |
[9] | Li Fan,Zhang Lijuan,Tan Kaixuan,Zhang Ying,Lu Jie,Li Shanshan,Yang Fang. Antimicrobial effect of chlorhexidine on Candida albicans in vitro according to D2O-labeled single-cell Raman micro-spectroscopy [J]. Int J Stomatol, 2021, 48(1): 35-40. |
[10] | Yi Zumu,Wang Xinyu,Wu Yingying. Bacterial diversity of oral flora in patients with diabetes [J]. Int J Stomatol, 2020, 47(5): 522-529. |
[11] | Shui Yusen,Lü Xiaoying,Li Jingya,Yang Ran. Progress in pathogenic factors and mechanisms of Enterococcus faecalis in oral and systemic diseases [J]. Int J Stomatol, 2020, 47(2): 225-234. |
[12] | Hu Yao,Cheng Lei,Guo Qiang,Ren Biao. Research progress on cross-kingdom interactions between Candida albicans and common oral bacteria [J]. Int J Stomatol, 2019, 46(6): 663-669. |
[13] | Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi. Research progress on the mechanism of Candida albicans in oral carcinogenesis [J]. Int J Stomatol, 2019, 46(6): 705-710. |
[14] | Jiang Xue,Huang Danyuan,Liao Wen. Advances in KTiOPO4 laser for oral disease treatment [J]. Int J Stomatol, 2019, 46(4): 456-462. |
[15] | Wei Li,Jinglin Zhou. Research on oral metabonomics [J]. Int J Stomatol, 2019, 46(3): 249-252. |