Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (6): 674-678.doi: 10.7518/gjkq.2017.06.010

• Periodontitis • Previous Articles     Next Articles

Treponema denticola chymotrypsin-like protease complex and its pathogenic features

Miao Di1,2, Wu Yafei3   

  1. 1. Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, Stomatological Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
    2. Dept. of Periodontics and Mucosa Disease, Stomatological Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
    3. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-01-20 Revised:2017-08-15 Online:2017-11-01 Published:2017-11-01
  • Supported by:
    This study was supported by Fundamental Research Funds of Xi’an Jiaotong University for Free Exploration Pro-ject(xjj2013068).

Abstract: Treponema denticola is closely associated with periodontal disease as a member of subgingival “red complex”.The surface protease chymotrypsin-like protease complex(CTLP) is an important virulent factor of T. denticola. CTLP plays significant roles in mediating pathogenesis of T. denticola, including adhesion and invasion to host cells and proteins, synergetic formation of biofilm with other periodontal pathogens, cytopathic effect, impairment and penetration of epithelial barrier, degradation of cell and tissue protein, modulation of host-derived proteinases and disruption of host immune regulation, and displaying multiple pathogenic features. Further study of CTLP will help to explain the pathogenesis of oral leptospira and to enrich the etiology and pathogenesis of periodontal diseases.

Key words: periodontal disease, Treponema denticola, chymotrypsin-like protease complex

CLC Number: 

  • Q51

TrendMD: 
[1] Chan EC, McLaughlin R. Taxonomy and virulence of oral spirochetes[J]. Oral Microbiol Immunol, 2000, 15(1):1-9.
[2] Visser MB, Ellen RP. New insights into the emer-ging role of oral spirochaetes in periodontal disease [J]. Clin Microbiol Infect, 2011, 17(4):502-512.
[3] Gatto MR, Montevecchi M, Paolucci M, et al. Pre-valence of six periodontal pathogens in subgingival samples of Italian patients with chronic periodon-titis[J]. New Microbiol, 2014, 37(4):517-524.
[4] Li Y, Feng X, Xu L, et al. Oral microbiome in Chinese patients with aggressive periodontitis and their family members[J]. J Clin Periodontol, 2015, 42(11):1015-1023.
[5] Kitti T, Supawadee J, Orawan C, et al. Porphyro - monas gingivalis , Aggregatibacter actinomyc e- temcomitans , and Treponema denticola / Prevotella intermedia co-infection are associated with severe periodontitis in a Thai population[J]. PLoS One, 2015, 10(8):e0136646.
[6] Hur Y, Choi SK, Ogata Y, et al. Microbiologic fin-dings in relation to risk assessment for periodontal disease: a cross-sectional study[J]. J Periodontol, 2016, 87(1):21-26.
[7] Byrne SJ, Dashper SG, Darby IB, et al. Progression of chronic periodontitis can be predicted by the le-vels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque[J]. Oral Microbiol Immunol, 2009, 24(6):469-477.
[8] Lee SF, Andrian E, Rowland E, et al. Immune re-sponse and alveolar bone resorption in a mouse model of Treponema denticola infection[J]. Infect Immun, 2009, 77(2):694-698.
[9] Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque[J]. J Clin Periodontol, 1998, 25(2):134-144.
[10] Dashper SG, Seers CA, Tan KH, et al. Virulence factors of the oral spirochete Treponema denticola [J]. J Dent Res, 2011, 90(6):691-703.
[11] Ishihara K. Virulence factors of Treponema denticola [J]. Periodontol 2000, 2010, 54(1):117-135.
[12] Grenier D, Uitto VJ, McBride BC. Cellular location of a Treponema denticola chymotrypsinlike protease and importance of the protease in migration through the basement membrane[J]. Infect Immun, 1990, 58 (2):347-351.
[13] Godovikova V, Wang HT, Goetting-Minesky MP, et al. Treponema denticola PrcB is required for ex-pression and activity of the PrcA-PrtP(dentilisin) complex[J]. J Bacteriol, 2010, 192(13):3337-3344.
[14] Godovikova V, Goetting-Minesky MP, Fenno JC. Composition and localization of Treponema den - ticola outer membrane complexes[J]. Infect Immun, 2011, 79(12):4868-4875.
[15] Uitto VJ, Grenier D, Chan EC, et al. Isolation of a chymotrypsinlike enzyme from Treponema denticola [J]. Infect Immun, 1988, 56(10):2717-2722.
[16] Keung Leung W, Haapasalo M, Uitto VJ, et al. The surface proteinase of Treponema denticola may me-diate attachment of the bacteria to epithelial cells[J]. Anaerobe, 1996, 2(1):39-46.
[17] Fenno JC, Hannam PM, Leung WK, et al. Cytopathic effects of the major surface protein and the chymo-trypsinlike protease of Treponema denticola [J]. Infect Immun, 1998, 66(5):1869-1877.
[18] Bamford CV, Fenno JC, Jenkinson HF, et al. The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adhe-rence and degradation[J]. Infect Immun, 2007, 75(9): 4364-4372.
[19] Inagaki S, Kimizuka R, Kokubu E, et al. Treponema denticola invasion into human gingival epithelial cells[J]. Microb Pathog, 2016, 94:104-111.
[20] Hashimoto M, Ogawa S, Asai Y, et al. Binding of Porphyromonas gingivalis fimbriae to Treponema denticola dentilisin[J]. FEMS Microbiol Lett, 2003, 226(2):267-271.
[21] Tan KH, Seers CA, Dashper SG, et al. Porphyro-monas gingivalis and Treponema denticola exhibit metabolic symbioses[J]. PLoS Pathog, 2014, 10(3):e1003955.
[22] Cogoni V, Morgan-Smith A, Fenno JC, et al. Tre - ponema denticola chymotrypsin-like proteinase (CTLP) integrates spirochaetes within oral microbial communities[J]. Microbiology, 2012, 158(Pt 3):759- 770.
[23] Sano Y, Okamoto-Shibayama K, Tanaka K, et al. Dentilisin involvement in coaggregation between Treponema denticola and Tannerella forsythia [J]. Anaerobe, 2014, 30:45-50.
[24] Sarkar J, McHardy IH, Simanian EJ, et al. Trans-criptional responses of Treponema denticola to other oral bacterial species[J]. PLoS One, 2014, 9(2):e88361.
[25] Uitto VJ, Pan YM, Leung WK, et al. Cytopathic effects of Treponema denticola chymotrypsin-like proteinase on migrating and stratified epithelial cells[J]. Infect Immun, 1995, 63(9):3401-3410.
[26] Chi B, Qi M, Kuramitsu HK. Role of dentilisin in Treponema denticol a epithelial cell layer penetration [J]. Res Microbiol, 2003, 154(9):637-643.
[27] Ellen RP, Ko KS, Lo CM, et al. Insertional inactiva-tion of the prtP gene of Treponema denticola con-firms dentilisin’s disruption of epithelial junctions[J]. J Mol Microbiol Biotechnol, 2000, 2(4):581-586.
[28] Marttila E, Järvensivu A, Sorsa T, et al. Intracellular localization of Treponema denticola chymotrypsin-like proteinase in chronic periodontitis[J]. J Oral Microbiol, 2014, 6. doi:10.3402/jom.v6.24349.
[29] Mäkinen PL, Mäkinen KK, Syed SA. Role of the chymotrypsin-like membrane-associated proteinase from Treponema denticola ATCC 35405 in inactiva-tion of bioactive peptides[J]. Infect Immun, 1995, 63 (9):3567-3575.
[30] Rosen G, Sela MN, Bachrach G. The antibacterial activity of LL-37 against Treponema denticola is dentilisin protease independent and facilitated by the major outer sheath protein virulence factor[J]. Infect Immun, 2011, 80(3):1107-1114.
[31] Birkedal-Hansen H. Role of matrix metalloproteinases in human periodontal diseases[J]. J Periodontol, 1993, 64(5 Suppl):474-484.
[32] Kinane DF, Darby IB, Said S, et al. Changes in gingival crevicular fluid matrix metalloproteinase-8 levels during periodontal treatment and maintenance [J]. J Periodont Res, 2003, 38(4):400-404.
[33] Sorsa T, Ingman T, Suomalainen K, et al. Identifica-tion of proteases from periodontopathogenic bacteria as activators of latent human neutrophil and fibro-blast-type interstitial collagenases[J]. Infect Immun, 1992, 60(11):4491-4495.
[34] Miao D, Fenno JC, Timm JC, et al. The Treponema denticola chymotrypsin-like protease dentilisin in-duces matrix metalloproteinase-2-dependent fibro-nectin fragmentation in periodontal ligament cells[J]. Infect Immun, 2011, 79(2):806-811.
[35] Miao D, Godovikova V, Qian X, et al. Treponema denticola upregulates MMP-2 activation in periodon-tal ligament cells: interplay between epigenetics and periodontal infection[J]. Arch Oral Biol, 2014, 59 (10):1056-1064.
[36] Capone R, Wang HT, Ning Y, et al. Human serum antibodies recognize Treponema denticola Msp and PrtP protease complex proteins[J]. Oral Microbiol Immunol, 2008, 23(2):165-169.
[37] McHardy I, Keegan C, Sim JH, et al. Transcriptional profiles of Treponema denticola in response to en-vironmental conditions[J]. PLoS One, 2010, 5(10):e13655.
[38] McDowell JV, Huang B, Fenno JC, et al. Analysis of a unique interaction between the complement re-gulatory protein factor H and the periodontal pathogen Treponema denticola [J]. Infect Immun, 2009, 77(4): 1417-1425.
[39] McDowell JV, Frederick J, Miller DP, et al. Identi-fication of the primary mechanism of complement evasion by the periodontal pathogen, Treponema denticola [J]. Mol Oral Microbiol, 2011, 26(2):140- 149.
[40] Fenno JC. Treponema denticola interactions with host proteins[J]. J Oral Microbiol, 2012, 4:PMC3285142.
[41] Miller DP, Bell JK, McDowell JV, et al. Structure of factor H-binding protein B(FhbB) of the periopatho-gen, Treponema denticola : insights into progression of periodontal disease[J]. J Biol Chem, 2012, 287 (16):12715-12722.
[42] Miller DP, Oliver LD Jr, Tegels BK, et al. The Treponema denticola FhbB protein is a dominant early antigen that elicits FhbB variant-specific anti-bodies that block factor H binding and cleavage by dentilisin[J]. Infect Immun, 2016, 84(7):2051-2058.
[43] Deng QD, Han Y, Xia X, et al. Effects of the oral spirochete Treponema denticola on interleukin-8 expression from epithelial cells[J]. Oral Microbiol Immunol, 2001, 16(3):185-187.
[44] Jo AR, Baek KJ, Shin JE, et al. Mechanisms of IL-8 suppression by Treponema denticola in gingival epithelial cells[J]. Immunol Cell Biol, 2014, 92(2): 139-147.
[45] Okuda T, Kimizuka R, Miyamoto M, et al. Treponema denticola induces interleukin-8 and macrophage chemoattractant protein 1 production in human umbilical vein epithelial cells[J]. Microbes Infect, 2007, 9(7):907-913.
[46] Miyamoto M, Ishihara K, Okuda K. The Treponema denticola surface protease dentilisin degrades in-terleukin-1 beta(IL-1 beta), IL-6, and tumor necrosis factor alpha[J]. Infect Immun, 2006, 74(4):2462- 2467.
[47] Yamazaki T, Miyamoto M, Yamada S, et al. Surface protease of Treponema denticola hydrolyzes C3 and influences function of polymorphonuclear leukocytes [J]. Microbes Infect, 2006, 8(7):1758-1763.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[3] Li Weiguang,Wu Yafei,Guo Shujuan.. Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease [J]. Int J Stomatol, 2022, 49(6): 724-730.
[4] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[5] Mu Xinyue,Liu Shutai. Research progress on motivational interviewing in the management of patients with periodontal disease [J]. Int J Stomatol, 2022, 49(1): 94-99.
[6] Bai Haoliang,Yang He,Zhao Lei. Research progress on periodontal disease risk assessment and prognosis judgment tools [J]. Int J Stomatol, 2021, 48(6): 696-702.
[7] Zhou Wanhang,Li Yanfei,Xu Ricong,Wan Qijun. Effects of non-surgical periodontal treatment on risk factors of chronic kidney disease and systematic inflammatory levels in patients with chronic kidney disease and periodontal disease: a Meta-analysis [J]. Int J Stomatol, 2021, 48(5): 528-535.
[8] Shen Yifen,Liu Chao,Tang Ying,Gu Yongchun. Research progress on effects of electronic cigarette exposure on periodontal health [J]. Int J Stomatol, 2021, 48(3): 347-353.
[9] Qin Xiaoru,Liu Mengyuan. Association between periodontal disease and myocardial infarction: a Meta-analysis of cohort studies [J]. Int J Stomatol, 2021, 48(2): 165-172.
[10] Chen Liang,Ding Yi,Meng Shu. Research progress of host modulation therapy in the treatment of periodontal diseases [J]. Int J Stomatol, 2020, 47(6): 706-710.
[11] Jia Leming,Jia Xiaoyue,Yang Ran,Zhou Xuedong,Xu Xin. Progress on the application of probiotics in the management of periodontal diseases [J]. Int J Stomatol, 2020, 47(5): 515-521.
[12] Liu Lin,Zhou Jieyu,Wu Yafei,Zhao Lei. Application of probiotic ecological regulation in prevention and treatment of periodontal diseases [J]. Int J Stomatol, 2020, 47(2): 131-137.
[13] Chen Yanyan,Peng Xian,Zhou Xuedong,Cheng Lei. Application of quantitative light-induced fluorescence in the clinical treatment of caries and periodontal diseases [J]. Int J Stomatol, 2019, 46(6): 699-704.
[14] Cheng Guoping,Ding Yi,Guo Shujuan. Progress in electrospun fibres as periodontal drug delivery systems [J]. Int J Stomatol, 2019, 46(5): 565-570.
[15] Zhu Bowen,Chen Limei,Guo Zhuling. Review of NLRP3 inflammasomes in periodontal diseases [J]. Int J Stomatol, 2019, 46(4): 450-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .