Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (3): 329-332.doi: 10.7518/gjkq.2016.03.017

Previous Articles     Next Articles

Effects of low-intensity pulsed ultrasound in periodontal tissue regeneration

Li Ziyan, Li Xin, Zhou Jinru, Li Lei   

  1. State Key Laboratory of Oral Diseases, Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
  • Received:2015-07-17 Revised:2016-01-28 Online:2016-05-01 Published:2016-05-01

Abstract: Periodontal disease, root caries, maxillofacial deformity, and trauma will cause defects in periodontal supporting tissue, such as alveolar bone, gingiva, and periodontium. Low-intensity pulsed ultrasound(LIPUS) can generate hyperthermia and mechanical stimulation, which can promote the generation and differentiation of cementoblast, odontoblast, and periodontal ligament cell(PDLC). PDLC can differentiate into mesodermal lineages and subsequently generate alveolar bone, cementum, and periodontium. Alkaline phosphatase(AKP) and osteocalcin(OCN) are the advanced markers of osteogenesis and osteogenic differentiation. LIPUS-stimulated PDLC shows improved AKP activity and OCN expression. LIPUS can also decrease the root absorption during orthodontic treatment; accelerate the proliferation, differentiation, and mineralization of cementoblast, which can repair root defects; and improve the expression of connective tissue growth factor that can accelerate angiogenesis and healing of periodontal tissue. LIPUS, as a safe and non-invasive treatment, can be applied in periodontal tissue regeneration. However, further research should be conducted to determine the most suitable stimulation intensity and treatment time.

Key words: low-intensity pulsed ultrasound, periodontium, regeneration, low-intensity pulsed ultrasound, periodontium, regeneration

CLC Number: 

  • R 781.4

TrendMD: 
[1] Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities[J]. Tissue Eng Part B Rev, 2010, 16(2):219-255.
[2] Needleman IG, Worthington HV, Giedrys-Leeper E, et al. Guided tissue regeneration for periodontal infra-bony defects[J]. Cochrane Database Syst Rev, 2006(2):CD001724.
[3] Romano CL, Romano D, Logoluso N. Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review[J]. Ultrasound Med Biol, 2009, 35(4):529-536.
[4] Malizos KN, Hantes ME, Protopappas V, et al. Lowintensity pulsed ultrasound for bone healing: an overview[J]. Injury, 2006, 37(Suppl 1):S56-S62.
[5] Azuma Y, Ito M, Harada Y, et al. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus[J]. J Bone Miner Res, 2001, 16(4):671-680.
[6] Chang WH, Sun JS, Chang SP, et al. Study of thermal effects of ultrasound stimulation on fracture healing [J]. Bioelectromagnetics, 2002, 23(4):256-263.
[7] Welgus HG, Jeffrey JJ, Eisen AZ. Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates[J]. J Biol Chem, 1981, 256(18):9516-9521.
[8] Rawool NM, Goldberg BB, Forsberg F, et al. Power Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound[J]. J Ultrasound Med, 2003, 22(2):145-153.
[9] Claes L, Willie B. The enhancement of bone regeneration by ultrasound[J]. Prog Biophys Mol Biol, 2007, 93(1/2/3):384-398.
[10] Mostafa NZ, Uluda? H, Dederich DN, et al. Anabolic effects of low-intensity pulsed ultrasound on human gingival fibroblasts[J]. Arch Oral Biol, 2009, 54(8):743-748.
[11] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429):149-155.
[12] Lim K, Kim J, Seonwoo H, et al. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bonederived mesenchymal stem cells for tooth tissue engineering[J]. Biomed Res Int, 2013:269724.
[13] Bains VK, Mohan R, Bains R. Application of ultrasound in periodontics: PartⅡ[J]. J Indian Soc Periodontol, 2008, 12(3):55-61.
[14] Liu Y, Zheng Y, Ding G, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine[J]. Stem Cells, 2008, 26(4):1065-1073.
[15] Washio K, Iwata T, Mizutani M, et al. Assessment of cell sheets derived from human periodontal ligament cells: a pre-clinical study[J]. Cell Tissue Res, 2010, 341(3):397-404.
[16] Ciavarella S, Dammacco F, De Matteo M, et al. Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts[J]. Stem Cells Dev, 2009, 18(8):1211-1220.
[17] Hu B, Zhang Y, Zhou J, et al. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells[J]. PLoS One, 2014, 9(4):e95168.
[18] Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton[J]. Cell, 2007, 130(3):456-469.
[19] Bharadwaj S, Naidu AG, Betageri GV, et al. Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women[J]. Osteoporos Int, 2009, 20(9):1603-1611.
[20] Eriksen EF. Cellular mechanisms of bone remodeling[J]. Rev Endocr Metab Disord, 2010, 11(4):219-227.
[21] Yang Y, Yang Y, Li X, et al. Functional analysis of core binding factor a1 and its relationship with related genes expressed by human periodontal ligament cells exposed to mechanical stress[J]. Eur J Orthod, 2010, 32(6):698-705.
[22] Li L, Han M, Li S, et al. Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway[J]. DNA Cell Biol, 2013, 32(9):488-497.
[23] Juliano RL. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members[J]. Annu Rev Pharmacol Toxicol, 2002, 42:283-323.
[24] Palaiologou AA, Yukna RA, Moses R, et al. Gingival, dermal, and periodontal ligament fibroblasts express different extracellular matrix receptors[J]. J Periodontol, 2001, 72(6):798-807.
[25] Ren L, Yang Z, Song J, et al. Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells[J]. Ultrasonics, 2013, 53(3):686-690.
[26] El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans[J]. Am J Orthod Dentofacial Orthop, 2004, 126(2):186-193.
[27] Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype[J]. J Dent Res, 2005, 84(5):390-406.
[28] Pavlin D, Gluhak-Heinrich J. Effect of mechanical loading on periodontal cells[J]. Crit Rev Oral Biol Med, 2001, 12(5):414-424.
[29] Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low-and high-intensity ultrasound[J]. Arch Oral Biol, 2008, 53(4):318-323.
[30] Rego EB, Inubushi T, Kawazoe A, et al. Ultrasound stimulation induces PGE(2)synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway[J]. Ultrasound Med Biol, 2010, 36(6):907-915.
[31] Rego EB, Inubushi T, Miyauchi M, et al. Ultrasound stimulation attenuates root resorption of rat replanted molars and impairs tumor necrosis factor-α signaling in vitro[J]. J Periodont Res, 2011, 46(6):648-654.
[32] Ikai H, Tamura T, Watanabe T, et al. Low-intensity pulsed ultrasound accelerates periodontal wound healing after flap surgery[J]. J Periodont Res, 2008, 43(2):212-216.
[33] Shiraishi R, Masaki C, Toshinaga A, et al. The effects of low-intensity pulsed ultrasound exposure on gingival cells[J]. J Periodontol, 2011, 82(10):1498-1503.
(本文采编 王晴)
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Wang Jiaxi,Mingyue Lü,Yuan Quan. Research progress on sticky bone in oral tissue regeneration [J]. Int J Stomatol, 2023, 50(5): 594-602.
[3] Song Wenpeng,Gong Beiwen,Li Dan,Zeng Jianyu,Qiu Lingling. Research progress on the application of mechanotherapy in orthodontic treatment [J]. Int J Stomatol, 2023, 50(5): 603-612.
[4] Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478.
[5] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[6] Yang Mengyao,Gao Xianling,Deng Shuli. Application of electrospun nanofibers in periodontal regeneration [J]. Int J Stomatol, 2023, 50(1): 10-18.
[7] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[8] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[9] Li Pei,Lin Ling,Zhao Wei.. Research progress on the stem cells from human exfoliated deciduous teeth in the regeneration and repair of oral tissue [J]. Int J Stomatol, 2022, 49(4): 483-488.
[10] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[11] Cai Yunzhu,Zhu Shu,Liu Yao,Chen Xu.. Research progress on dental stem cells in the treatment of nervous system diseases [J]. Int J Stomatol, 2022, 49(3): 255-262.
[12] Qin Siwen,Liao Li.. Strategies of vascularization in dental pulp regeneration [J]. Int J Stomatol, 2022, 49(3): 272-282.
[13] Li Yanfei,Zhang Xinchun. Research progress on the dentin bone repair material [J]. Int J Stomatol, 2022, 49(2): 197-203.
[14] Zhou Yi,Zhao Yuming. Research progress on various dental pulp regeneration scaffolds [J]. Int J Stomatol, 2022, 49(1): 19-26.
[15] Liu Jiacheng,Meng Zhaosong,Li Hongjie,Sui Lei. The role of follistatin in oral and maxillofacial development and its therapeutic application prospect [J]. Int J Stomatol, 2021, 48(5): 556-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .