Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (2): 207-211.doi: 10.7518/gjkq.2016.02.020

Previous Articles     Next Articles

Inhibition and induction on the differentiation of periodontal ligament stem cells in different microenvironments

Pan Youtiao1, Wang Yifei2, Zhao Xun3, Zeng Xianzhuo3, Zhang Zhen1, Cheng Junjun1, Li Xianing1, Liu Wei1, Zhao Hongyu4   

  1. 1. Dept. of Periodontics, Hospital of Stomatology, Zhengzhou University, Zhengzhou 450000, China; 2. School of Life Sciences, Jinan University, Guangzhou 510000, China; 3. Shenzhen IStem Regenerative Medicine Sci-Tech Limitied Company, Shenzhen 518000, China; 4. Center of Special Diagnosis, Stomatological Hospital of Guangdong Province, Guangzhou 511400, China)
  • Received:2015-07-24 Revised:2015-10-28 Online:2016-03-01 Published:2016-03-01

Abstract: Periodontal ligament stem cells(PDLSC), basic cells in the new treatment strategy for periodontal regeneration, perform a triggering function in regeneration after periodontal defect and the maintenance of periodontal dynamic equilibrium. Based on basic research and preclinical studies, as well as clinical trials, PDLSC would show different proliferation and differentiation in different microenvironment. PDLSC niche and inflammation could inhibition differentiation, whereas the microenvironment of dentin and developmental apex could show promotion. Therefore, the effects of different microenvironments on PDLSC may open the access of biological function and present theoretic foundation for periodontal regeneration. Therefore, this review focuses on the features and functional mechanisms of periodontal microenvironments and adds further insight into the use of PDLSC preparation as viable therapy for periodontal regeneration.

Key words: periodontal, periodontal ligament stem cell, microenvironment, cell differentiation, periodontal, periodontal ligament stem cell, microenvironment, cell differentiation

CLC Number: 

  • Q 254

TrendMD: 
[1] Kinane DF, Marshall GJ. Periodontal manifestations of systemic disease[J]. Aust Dent J, 2001, 46(1):2-12.
[2] Gon?alves PF, Gurgel BC, Pimentel SP, et al. Effect of two different approaches for root decontamination on new cementum formation following guided tissue regeneration: a histomorphometric study in dogs[J]. J Periodont Res, 2006, 41(6):535-540.
[3] Venezia E, Goldstein M, Boyan BD, et al. The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis [J]. Crit Rev Oral Biol Med, 2004, 15(6):382-402.
[4] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429):149-155.
[5] Tobita M, Uysal AC, Ogawa R, et al. Periodontal tissue regeneration with adipose-derived stem cells [J]. Tissue Eng Part A, 2008, 14(6):945-953.
[6] Chen YL, Chen PK, Jeng LB, et al. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty[J]. Gene Ther, 2008, 15(22):1469-1477.
[7] Li H, Yan F, Lei L, et al. Application of autologous cryopreserved bone marrow mesenchymal stem cells for periodontal regeneration in dogs[J]. Cells Tissues Organs, 2009, 190(2):94-101.
[8] Tan Z, Zhao Q, Gong P, et al. Research on promoting promoting periodontal regeneration with human basic fibroblast growth factor-modified bone marrow mesenchymal stromal cell gene therapy[J]. Cytotherapy, 2009, 11(3):317-325.
[9] 唐亮, 金岩. 影响牙周膜干细胞功能的重要因素[J]. 实用口腔医学杂志, 2009, 25(5):737-740.
Tang L, Jin Y. The important factors influencing the functions of periodontal ligament stem cells[J]. J Pract Stomatol, 2009, 25(5):737-740.
[10] Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration[J]. Periodontol 2000, 2006, 40(1):164-172.
[11] 张盼盼, 李纾. 牙周组织自身稳定的分子机制研究进展[J]. 国际口腔医学杂志, 2010, 37(3):291-293.
Zhang PP, Li S. Research progress on homeostasis of periodontal tissues hi molecular mechanism[J]. Int J Stomatol, 2010, 37(3):291-293.
[12] 孙静, 李纾. 牙周膜干细胞巢与牙周组织再生[J].国际口腔医学杂志, 2011, 38(4):460-462.
Sun J, Li S. Periodontal ligament stem cell niche and periodontal tissue regeneration[J]. Int J Stomatol, 2011, 38(4):460-462.
[13] Pluchino S, Muzio L, Imitola J, et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment[J]. Brain, 2008, 131(Pt 10):2564-2578.
[14] Wang Y, Imitola J, Rasmussen S, et al. Paradoxical dysregulation of the neural stem cell pathway sonic hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis[J]. Ann Neurol, 2008, 64(4):417-427.
[15] Zenovich AG, Taylor DA. Atherosclerosis as a disease of failed endogenous repair[J]. Front Biosci, 2008, 13:3621-3636.
[16] Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer[J]. Annu Rev Cell Dev Biol, 2004, 20:695-723.
[17] Yamada S, Tomoeda M, Ozawa Y, et al. PLAP-1/ asporin, a novel negative regulator of periodontal ligament mineralization[J]. J Biol Chem, 2007, 282(32):23070-23080.
[18] Tomoeda M, Yamada S, Shirai H, et al. PLAP-1/ asporin inhibits activation of BMP receptor via its leucine-rich repeat motif[J]. Biochem Biophys Res Commun, 2008, 371(2):191-196.
[19] 李春雷, 卢昌懿, 李长霞, 等. miR101通过PLAP-1调节牙周膜细胞成骨分化的研究[J]. 牙体牙髓牙周病学杂志, 2014, 24(3):125-129. Li CL, Lu CY, Li CX, et al. miR101 regulates the osteogenic differentiation of periodontal ligament cells via PLAP-1[J]. Chin J Cons Dent, 2014, 24(3):125-129.
[20] Yin A, Korzh S, Winata CL, et al. Wnt signaling is required for early development of zebrafish swimbladder[J]. PLoS One, 2011, 6(3):e18431.
[21] Wu Y, Zhang Y, Zhang H, et al. p15RS attenuates Wnt/β-catenin signaling by disruptingβ-catenin TCF4 interaction[J]. J Biol Chem, 2010, 285(45):34621-34631.
[22] David MD, Cantí C, Herreros J. Wnt-3a and Wnt-3 differently stimulate proliferation and neurogenesis of spinal neural precursors and promote neurite outgrowth by canonical signaling[J]. J Neurosci Res, 2010, 88(14):3011-3023.
[23] Liu G, Vijayakumar S, Grumolato L, et al. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells[J]. J Cell Biol, 2009, 185(1):67-75.
[24] Liu N, Shi S, Deng M, et al. High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway[J]. J Bone Miner Res, 2011, 26(9):2082-2095.
[25] 刘一涵, 赵喜聪, 张勇杰, 等. 不同诱导环境对牙周膜干细胞膜片生物学特性的影响[J]. 实用口腔医学杂志, 2012, 28(3):279-284. Liu YH, Zhao XC, Zhang YJ, et al. Effects of different induction systems on periodontal ligament stem cell sheets[J]. J Pract Stomatol, 2012, 28(3):279-284.
[26] Zeichner-David M. Regeneration of periodontal tissues: cementogenesis revisited[J]. Periodontol 2000, 2006, 41:196-217.
[27] 蒋玉姣, 曹灵, 俞艳, 等. 牙本质非胶原蛋白对人牙髓干细胞增殖活性及矿化能力的影响[J]. 口腔生物医学杂志, 2013, 4(1):15-18.
Jiang YJ, Cao L, Yu Y, et al. Effects of dentin noncollagenous proteins on the proliferation and mineralization of human dental pulp stem cells[J]. Oral Biomed, 2013, 4(1):15-18.
[28] Ma ZF, Li S, Song Y, et al. The biological effect of dentin noncollagenous proteins(DNCPs) on the human periodontal ligament stem cells(HPDLSC) in vitro and in vivo[J]. Tissue Eng Part A, 2008, 14(12):2059-2068.
[29] Xu L, Tang L, Jin F, et al. The apical region of developing tooth root constitutes a complex and maintains the ability to generate root and periodontiumlike tissues[J]. J Periodont Res, 2009, 44(2):275-282.
[30] Yang ZH, Zhang XJ, Dang NN, et al. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues[J]. J Periodont Res, 2009, 44(2):199-210.
[31] 束丽红, 曹灵, 闫明, 等. 不同发育阶段的人牙周膜干细胞增殖能力和成牙/成骨能力的比较研究[J].口腔生物医学, 2013, 4(2):65-69. Shu LH, Cao L, Yan M, et al. Study on the proliferation and osteo/odongenic differentiation of human periodontal ligament stem cells in different developing stages[J]. Oral Biomed, 2013, 4(2):65-69.
[32] Ohshima H, Nakasone N, Hashimoto E, et al. The eternal tooth germ is formed at the apical end of continuously growing teeth[J]. Arch Oral Biol, 2005, 50(2):153-157.
[33] Zhou Y, Li Y, Mao L, et al. Periodontal healing by periodontal ligament cell sheets in a teeth replantation model[J]. Arch Oral Biol, 2012, 57(2):169-176.
[34] Foster BL, Popowics TE, Fong HK, et al. Advances in defining regulators of cementum development and periodontal regeneration[J]. Curr Top Dev Biol, 2007, 78(1):47-126.
(本文采编 王晴)
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Wu Jiamin,Xia Bin,Yang Hefeng,Xu Biao.. Research progress on cancer-associated fibroblasts in the tumor microenvironment of oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(6): 711-717.
[3] Yu Yuelin,Kong Weidong. Research progress on the association between primary failure of tooth eruption and parathyroid hormone receptor 1 gene [J]. Int J Stomatol, 2023, 50(5): 573-580.
[4] Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478.
[5] Jiang Qingsong,Lai Wenli,Wang Yan.. Research progress on bone augmentation technique in orthodontics [J]. Int J Stomatol, 2023, 50(2): 243-250.
[6] Yang Mengyao,Gao Xianling,Deng Shuli. Application of electrospun nanofibers in periodontal regeneration [J]. Int J Stomatol, 2023, 50(1): 10-18.
[7] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[8] Luo Wanyi,Han Juxi,Zhou Xuedong,Peng Xian,Zheng Xin. Research progress on the mechanism of Fusobacterium nucleatum promoting the initiation and development of colorectal cancer [J]. Int J Stomatol, 2023, 50(1): 52-60.
[9] Li Weiguang,Wu Yafei,Guo Shujuan.. Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease [J]. Int J Stomatol, 2022, 49(6): 724-730.
[10] Zha Yunchen,Zhang Jiajia,Kong Weidong.. Research progress on the etiology of primary failure of eruption [J]. Int J Stomatol, 2022, 49(4): 386-391.
[11] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[12] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[13] Cao Zhengguo. Periodontal considerations in prosthetic dentistry [J]. Int J Stomatol, 2022, 49(1): 1-11.
[14] Mu Xinyue,Liu Shutai. Research progress on motivational interviewing in the management of patients with periodontal disease [J]. Int J Stomatol, 2022, 49(1): 94-99.
[15] Liu Chengcheng, Ding Yi. Clinical diagnosis, treatment, and management strategies of common oral infectious disease during pregnancy [J]. Int J Stomatol, 2021, 48(6): 621-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .