国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (3): 329-332.doi: 10.7518/gjkq.2016.03.017

• 综述 • 上一篇    下一篇

低强度脉冲超声在牙周组织再生中的作用

李紫嫣,李鑫,周进茹,李磊   

  1. 口腔疾病研究国家重点实验室 华西口腔医院修复科(四川大学) 成都 610041
  • 收稿日期:2015-07-17 修回日期:2016-01-28 出版日期:2016-05-01 发布日期:2016-05-01
  • 通讯作者: 李磊,副教授,博士,Email:geraldleelei@163.com
  • 作者简介:李紫嫣,硕士,Email:445821974@qq.com

Effects of low-intensity pulsed ultrasound in periodontal tissue regeneration

Li Ziyan, Li Xin, Zhou Jinru, Li Lei   

  1. State Key Laboratory of Oral Diseases, Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
  • Received:2015-07-17 Revised:2016-01-28 Online:2016-05-01 Published:2016-05-01

摘要: 牙周病、根面龋以及颌面先天畸形和创伤等都会不同程度地导致牙槽骨、牙龈和牙周膜等牙周支持组织缺损。低强度脉冲超声(LIPUS)的温热效应和机械刺激可促进成骨质细胞、成牙本质细胞和牙周膜细胞(PDLC)的生成和分化。PDLC可分化成中胚层细胞谱系,进而生成牙槽骨、牙骨质和牙周膜等牙周组织。碱性磷酸酶(AKP)和骨钙蛋白(OCN)为骨形成或骨分化的晚期标志物,经LIPUS刺激过的PDLC,其AKP活性和OCN的表达皆提高。经LIPUS刺激可减少正畸过程中牙根的吸收,促进修复牙根缺损的成牙骨质细胞的增殖分化和矿化,促进牙周组织伤口愈合和血管生成的结缔组织生长因子的表达,从而加速牙周软组织的愈合。LIPUS刺激在牙周支持组织再生中为一种安全无创的治疗手段,但其最佳刺激强度和治疗时间尚需继续探索。

关键词: 低强度脉冲超声, 牙周组织, 再生, 低强度脉冲超声, 牙周组织, 再生

Abstract: Periodontal disease, root caries, maxillofacial deformity, and trauma will cause defects in periodontal supporting tissue, such as alveolar bone, gingiva, and periodontium. Low-intensity pulsed ultrasound(LIPUS) can generate hyperthermia and mechanical stimulation, which can promote the generation and differentiation of cementoblast, odontoblast, and periodontal ligament cell(PDLC). PDLC can differentiate into mesodermal lineages and subsequently generate alveolar bone, cementum, and periodontium. Alkaline phosphatase(AKP) and osteocalcin(OCN) are the advanced markers of osteogenesis and osteogenic differentiation. LIPUS-stimulated PDLC shows improved AKP activity and OCN expression. LIPUS can also decrease the root absorption during orthodontic treatment; accelerate the proliferation, differentiation, and mineralization of cementoblast, which can repair root defects; and improve the expression of connective tissue growth factor that can accelerate angiogenesis and healing of periodontal tissue. LIPUS, as a safe and non-invasive treatment, can be applied in periodontal tissue regeneration. However, further research should be conducted to determine the most suitable stimulation intensity and treatment time.

Key words: low-intensity pulsed ultrasound, periodontium, regeneration, low-intensity pulsed ultrasound, periodontium, regeneration

中图分类号: 

  • R 781.4
[1] Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities[J]. Tissue Eng Part B Rev, 2010, 16(2):219-255.
[2] Needleman IG, Worthington HV, Giedrys-Leeper E, et al. Guided tissue regeneration for periodontal infra-bony defects[J]. Cochrane Database Syst Rev, 2006(2):CD001724.
[3] Romano CL, Romano D, Logoluso N. Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review[J]. Ultrasound Med Biol, 2009, 35(4):529-536.
[4] Malizos KN, Hantes ME, Protopappas V, et al. Lowintensity pulsed ultrasound for bone healing: an overview[J]. Injury, 2006, 37(Suppl 1):S56-S62.
[5] Azuma Y, Ito M, Harada Y, et al. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus[J]. J Bone Miner Res, 2001, 16(4):671-680.
[6] Chang WH, Sun JS, Chang SP, et al. Study of thermal effects of ultrasound stimulation on fracture healing [J]. Bioelectromagnetics, 2002, 23(4):256-263.
[7] Welgus HG, Jeffrey JJ, Eisen AZ. Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates[J]. J Biol Chem, 1981, 256(18):9516-9521.
[8] Rawool NM, Goldberg BB, Forsberg F, et al. Power Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound[J]. J Ultrasound Med, 2003, 22(2):145-153.
[9] Claes L, Willie B. The enhancement of bone regeneration by ultrasound[J]. Prog Biophys Mol Biol, 2007, 93(1/2/3):384-398.
[10] Mostafa NZ, Uluda? H, Dederich DN, et al. Anabolic effects of low-intensity pulsed ultrasound on human gingival fibroblasts[J]. Arch Oral Biol, 2009, 54(8):743-748.
[11] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429):149-155.
[12] Lim K, Kim J, Seonwoo H, et al. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bonederived mesenchymal stem cells for tooth tissue engineering[J]. Biomed Res Int, 2013:269724.
[13] Bains VK, Mohan R, Bains R. Application of ultrasound in periodontics: PartⅡ[J]. J Indian Soc Periodontol, 2008, 12(3):55-61.
[14] Liu Y, Zheng Y, Ding G, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine[J]. Stem Cells, 2008, 26(4):1065-1073.
[15] Washio K, Iwata T, Mizutani M, et al. Assessment of cell sheets derived from human periodontal ligament cells: a pre-clinical study[J]. Cell Tissue Res, 2010, 341(3):397-404.
[16] Ciavarella S, Dammacco F, De Matteo M, et al. Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts[J]. Stem Cells Dev, 2009, 18(8):1211-1220.
[17] Hu B, Zhang Y, Zhou J, et al. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells[J]. PLoS One, 2014, 9(4):e95168.
[18] Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton[J]. Cell, 2007, 130(3):456-469.
[19] Bharadwaj S, Naidu AG, Betageri GV, et al. Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women[J]. Osteoporos Int, 2009, 20(9):1603-1611.
[20] Eriksen EF. Cellular mechanisms of bone remodeling[J]. Rev Endocr Metab Disord, 2010, 11(4):219-227.
[21] Yang Y, Yang Y, Li X, et al. Functional analysis of core binding factor a1 and its relationship with related genes expressed by human periodontal ligament cells exposed to mechanical stress[J]. Eur J Orthod, 2010, 32(6):698-705.
[22] Li L, Han M, Li S, et al. Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway[J]. DNA Cell Biol, 2013, 32(9):488-497.
[23] Juliano RL. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members[J]. Annu Rev Pharmacol Toxicol, 2002, 42:283-323.
[24] Palaiologou AA, Yukna RA, Moses R, et al. Gingival, dermal, and periodontal ligament fibroblasts express different extracellular matrix receptors[J]. J Periodontol, 2001, 72(6):798-807.
[25] Ren L, Yang Z, Song J, et al. Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells[J]. Ultrasonics, 2013, 53(3):686-690.
[26] El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans[J]. Am J Orthod Dentofacial Orthop, 2004, 126(2):186-193.
[27] Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype[J]. J Dent Res, 2005, 84(5):390-406.
[28] Pavlin D, Gluhak-Heinrich J. Effect of mechanical loading on periodontal cells[J]. Crit Rev Oral Biol Med, 2001, 12(5):414-424.
[29] Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low-and high-intensity ultrasound[J]. Arch Oral Biol, 2008, 53(4):318-323.
[30] Rego EB, Inubushi T, Kawazoe A, et al. Ultrasound stimulation induces PGE(2)synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway[J]. Ultrasound Med Biol, 2010, 36(6):907-915.
[31] Rego EB, Inubushi T, Miyauchi M, et al. Ultrasound stimulation attenuates root resorption of rat replanted molars and impairs tumor necrosis factor-α signaling in vitro[J]. J Periodont Res, 2011, 46(6):648-654.
[32] Ikai H, Tamura T, Watanabe T, et al. Low-intensity pulsed ultrasound accelerates periodontal wound healing after flap surgery[J]. J Periodont Res, 2008, 43(2):212-216.
[33] Shiraishi R, Masaki C, Toshinaga A, et al. The effects of low-intensity pulsed ultrasound exposure on gingival cells[J]. J Periodontol, 2011, 82(10):1498-1503.
(本文采编 王晴)
[1] 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115.
[2] 胡佳,王秀清,卢国英,黄晓晶. 再生性牙髓治疗在成人根尖发育不全恒牙应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 686-695.
[3] 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602.
[4] 宋文鹏,龚蓓文,李聃,曾剑玉,仇玲玲. 机械疗法在正畸治疗中应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 603-612.
[5] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[6] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[7] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[8] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[9] 杨梦瑶,高现灵,邓淑丽. 静电纺丝纳米纤维在牙周再生中的应用[J]. 国际口腔医学杂志, 2023, 50(1): 10-18.
[10] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[11] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[12] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[13] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[14] 蔡韵竹,朱姝,刘尧,陈旭. 牙源性干细胞用于治疗神经系统疾病的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 255-262.
[15] 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .