国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (6): 832-838.doi: 10.7518/gjkq.2025099

• 综述 • 上一篇    

精神疾病与牙周疾病关联性的研究进展

连莹莹(),赵蕾()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2024-11-01 修回日期:2024-12-17 出版日期:2025-11-01 发布日期:2025-10-23
  • 通讯作者: 赵蕾
  • 作者简介:连莹莹,硕士,Email:lianyingy2024@163.com
  • 基金资助:
    四川省自然科学基金(2023NSFSC0553)

Research progress on the correlation between mental illness and periodontal diseases

Yingying Lian(),Lei Zhao()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-11-01 Revised:2024-12-17 Online:2025-11-01 Published:2025-10-23
  • Contact: Lei Zhao
  • Supported by:
    Sichuan Natural Science Foundation Project(2023NSFSC0553)

摘要:

近年来精神疾病的患病率在全球均呈逐年上升的趋势,精神健康问题越来越受到重视,而精神疾病在牙周疾病发生发展中扮演的角色亦逐渐受到学术界关注。精神状态异常可触发一系列生理反应,包括下丘脑-垂体-肾上腺轴激活、自主神经系统失衡以及免疫系统功能改变,这些反应通过影响骨形成、细菌毒力强弱、血管功能和免疫功能等,参与调控了牙周组织的健康状态。服用精神疾病类药物对牙周状态也有一定影响。本文系统阐释了精神疾病通过神经—内分泌—免疫网络调控牙周健康的多元机制,并将精神类药物纳入牙周病治疗的讨论框架,以期为建立精神疾病与口腔健康的跨学科防治策略提供一定参考。

关键词: 精神疾病, 牙周病, 下丘脑—垂体—肾上腺轴, 致病机制

Abstract:

In recent years, with the rising pressure faced by people, mental health problems have become progressively conspicuous. The prevalence of mental illness has been increasing annually on a global scale, and its potential role in perio-dontal disease development has gradually attracted academic attention. Abnormal mental states can initiate various physiological responses, including hypothalamic-pituitary-adrenal axis over-activation, autonomic nervous system imbalance, and immune system dysfunction. These responses are involved in the regulation of periodontal tissue health by affecting bone formation, bacterial virulence, vascular function, and immune responses. Furthermore, numerous studies have indicated that the use of psychotropic medications has a certain impact on periodontal health. However, current research on the relationship and mechanisms between the two remains limited. This study systematically elucidates the multifaceted mechanisms through which mental disorders regulate periodontal health via the neuro-endocrine-immune network. It also incorporates psychotropic medications into the therapeutic discourse on periodontal disease management. The findings aim to provide a theoretical foundation for developing interdisciplinary prevention and treatment strategies integrating mental and oral healthcare.

Key words: mental illness, periodontal disease, hypothalamic-pituitary-adrenal axis, pathogenesis

中图分类号: 

  • R781.4
[1] Mazure CM, Husky MM, Pietrzak RH. Stress as a risk factor for mental disorders in a gendered environment[J]. JAMA Psychiatry, 2023, 80(11): 1087-1088.
[2] World Health Organization. World mental health report: transforming mental health for all[R/OL]. [2024‑12‑10]. .
[3] World Health Organization. Mental health in China[R/OL].[2024-10-14]..
[4] Baker AL, Forbes E, Pohlman S, et al. Behavioral interventions to reduce cardiovascular risk among people with severe mental disorder[J]. Annu Rev Clin Psychol, 2022, 18: 99-124.
[5] Darby I. Risk factors for periodontitis & peri-implantitis[J]. Periodontol 2000, 2022, 90(1): 9-12.
[6] Cui Y, Hong SB, Xia YH, et al. Melatonin enginee-ring M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy[J]. Adv Sci, 2023, 10(27): e2302029.
[7] Sherwin E, Sandhu KV, Dinan TG, et al. May the force be with you: the light and dark sides of the microbiota-gut-brain axis in neuropsychiatry[J]. CNS Drugs, 2016, 30(11): 1019-1041.
[8] Bennett FC, Molofsky AV. The immune system and psychiatric disease: a basic science perspective[J]. Clin Exp Immunol, 2019, 197(3): 294-307.
[9] Misiak B, Łoniewski I, Marlicz W, et al. The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 102: 109951.
[10] Becerra-Ruiz JS, Guerrero-Velázquez C, Martínez-Esquivias F, et al. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss[J]. Oral Dis, 2022, 28(6): 1441-1447.
[11] Takeguchi A, Miyazawa K, Sato T, et al. Effects of a β2-adrenergic receptor blocker on experimental periodontitis in spontaneously hypertensive rats[J]. Life Sci, 2021, 277: 119593.
[12] Turner E, Berry K, Aggarwal VR, et al. Oral health self-care behaviours in serious mental illness: a systematic review and meta-analysis[J]. Acta Psychiatr Scand, 2022, 145(1): 29-41.
[13] Coelho JMF, Miranda SS, da Cruz SS, et al. Common mental disorder is associated with periodontitis[J]. J Periodontal Res, 2020, 55(2): 221-228.
[14] Kalaigian A, Chaffee BW. Mental health and oral health in a nationally representative cohort[J]. J Dent Res, 2023, 102(9): 1007-1014.
[15] Wu PC, Tsai SJ, Hsu JW, et al. Risk of periodontitis in adolescents with bipolar disorder: a cohort study of 21, 255 subjects[J]. Eur Child Adolesc Psychiatry, 2024, 33(5): 1529-1537.
[16] Zheng DX, Kang XN, Wang YX, et al. Periodontal disease and emotional disorders: a meta-analysis[J]. J Clin Periodontol, 2021, 48(2): 180-204.
[17] Wang JJ, Wang YN, Li HH, et al. Associations between oral health and depression and anxiety: a cross-sectional and prospective cohort study from the UK Biobank[J]. J Clin Periodontol, 2024, 51(11): 1466-1477.
[18] Zhang YH, Lin SF, Chen XZ, et al. Association of periodontitis with all-cause and cause-specific mortality among individuals with depression: a population-based study[J]. Sci Rep, 2024, 14(1): 21917.
[19] Pi YY, Jiao ZM, Wang LN, et al. Genetic evidence strengthens the bidirectional connection between oral health status and psychiatric disorders: a two-sample Mendelian randomization study[J]. J Affect Disord, 2024, 351: 661-670.
[20] Tong SS, Lyu YL, Huang WT, et al. Genetically predicted causal associations between periodontitis and psychiatric disorders[J]. BMJ Ment Health, 2023, 26(1): e300864.
[21] Bera RN, Tripathi R, Bhattacharjee B, et al. Implant survival in patients with neuropsychiatric, neurocognitive, and neurodegenerative disorders: a meta-analysis[J]. Natl J Maxillofac Surg, 2021, 12(2): 162-170.
[22] Walter EE, Fernandez F, Snelling M, et al. Stress induced cortisol release and schizotypy[J]. Psychoneuroendocrinology, 2018, 89: 209-215.
[23] Mason NL, Szabo A, Kuypers KPC, et al. Psilocybin induces acute and persisting alterations in immune status in healthy volunteers: an experimental, placebo-controlled study[J]. Brain Behav Immun, 2023, 114: 299-310.
[24] Sagmeister MS, Harper L, Hardy RS. Cortisol excess in chronic kidney disease-a review of changes and impact on mortality[J]. Front Endocrinol, 2023, 13: 1075809.
[25] Lee YH, Suk C, Shin SI, et al. Salivary cortisol, dehydroepiandrosterone, and chromogranin A levels in patients with gingivitis and periodontitis and a novel biomarker for psychological stress[J]. Front Endocrinol, 2023, 14: 1147739.
[26] Decker A, Askar H, Tattan M, et al. The assessment of stress, depression, and inflammation as a collective risk factor for periodontal diseases: a systematic review[J]. Clin Oral Investig, 2020, 24(1): 1-12.
[27] Tang BY, Chen Y, Zhao P, et al. MiR-601-induced BMSCs senescence accelerates steroid-induced osteonecrosis of the femoral head progression by targeting SIRT1[J]. Cell Mol Life Sci, 2023, 80(9): 261.
[28] Kim HM, Rothenberger CM, Davey ME. Cortisol promotes surface translocation of Porphyromonas gingivalis [J]. Pathogens, 2022, 11(9): 982.
[29] Kinane DF, Bartold PM. Clinical relevance of the host responses of periodontitis[J]. Periodontol 2000, 2007, 43: 278-293.
[30] Buduneli N. Environmental factors and periodontal microbiome[J]. Periodontol 2000, 2021, 85(1): 112-125.
[31] Villarreal MF, Wainsztein AE, Mercè RÁ, et al. Distinct neural processing of acute stress in major depression and borderline personality disorder[J]. J Affect Disord, 2021, 286: 123-133.
[32] Bigalke JA, Carter JR. Sympathetic neural control in humans with anxiety-related disorders[J]. Compr Physiol, 2021, 12(1): 3085-3117.
[33] Tschaffon-Müller MEA, Kempter E, Steppe L, et al. Neutrophil-derived catecholamines mediate negative stress effects on bone[J]. Nat Commun, 2023, 14(1): 3262.
[34] Mesa F, Magán-Fernández A, Muñoz R, et al. Catecholamine metabolites in urine, as chronic stress biomarkers, are associated with higher risk of chro-nic periodontitis in adults[J]. J Periodontol, 2014, 85(12): 1755-1762.
[35] Graziano TS, Closs P, Poppi T, et al. Catecho-lamines promote the expression of virulence and o-xidative stress genes in Porphyromonas gingivalis [J]. J Periodontal Res, 2014, 49(5): 660-669.
[36] Xing XY, Hu XY. Risk factors of cytokine release syndrome: stress, catecholamines, and beyond[J]. Trends Immunol, 2023, 44(2): 93-100.
[37] Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression[J]. Mol Psychiatry, 2016, 21(12): 1696-1709.
[38] Usui M, Onizuka S, Sato T, et al. Mechanism of alveolar bone destruction in periodontitis-periodontal bacteria and inflammation[J]. Jpn Dent Sci Rev, 2021, 57: 201-208.
[39] Wei C, Jiang W, Wang RY, et al. Brainendothelial GSDMD activation mediates inflammatory BBB breakdown[J]. Nature, 2024, 629(8013): 893-900.
[40] Ruiz NAL, Del Ángel DS, Brizuela NO, et al. Inflammatory process and immune system in major depressive disorder[J]. Int J Neuropsychopharmacol, 2022, 25(1): 46-53.
[41] Cheiran Pereira G, Piton E, Moreira Dos Santos B, et al. Microglia and HPA axis in depression: an overview of participation and relationship[J]. World J Biol Psychiatry, 2022, 23(3): 165-182.
[42] Walker WH 2nd, Walton JC, DeVries AC, et al. Circadian rhythm disruption and mental health[J]. Transl Psychiatry, 2020, 10(1): 28.
[43] Sehirli AÖ, Chukwunyere U, Aksoy U, et al. The circadian clock gene Bmal1: role in COVID-19 and periodontitis[J]. Chronobiol Int, 2021, 38(6): 779-784.
[44] Liu XM, Cao NB, Liu XC, et al. Circadian rhythm disorders aggravate periodontitis by modulating BMAL1[J]. Int J Mol Sci, 2022, 24(1): 374.
[45] Xie MR, Tang QM, Nie JM, et al. BMAL1-downregulation aggravates Porphyromonas gingivalis-induced atherosclerosis by encouraging oxidative stress[J]. Circ Res, 2020, 126(6): e15-e29.
[46] Ma XY, Chen X, Duan ZH, et al. Circadian rhythm disruption exacerbates the progression of macrophage dysfunction and alveolar bone loss in pe-riodontitis[J]. Int Immunopharmacol, 2023, 116: 109796.
[47] Xue L, Zou X, Yang XQ, et al. Chronic periodontitis induces microbiota-gut-brain axis disorders and cognitive impairment in mice[J]. Exp Neurol, 2020, 326: 113176.
[48] Ge TT, Yao XX, Zhao HS, et al. Gut microbiota and neuropsychiatric disorders: implications for neu-roendocrine-immune regulation[J]. Pharmacol Res, 2021, 173: 105909.
[49] Wellman CL. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration[J]. J Neurobiol, 2001, 49(3): 245-253.
[50] Liu RY, Li L, Zhang ZT, et al. Clinical efficacy of melatonin as adjunctive therapy to non-surgical treatment of periodontitis: a systematic review and meta-analysis[J]. Inflammopharmacology, 2022, 30(3): 695-704.
[51] Wu XB, Qiao SC, Wang W, et al. Melatonin prevents peri-implantitis via suppression of TLR4/NF-κB[J]. Acta Biomater, 2021, 134: 325-336.
[52] Nichols AL, Blumenfeld Z, Luebbert L, et al. Selective serotonin reuptake inhibitors within cells: temporal resolution in cytoplasm, endoplasmic reticulum, and membrane[J]. J Neurosci, 2023, 43(13): 2222-2241.
[53] Hakam AE, Duarte PM, Mbadu MP, et al. Association of different antidepressant classes with clinical attachment level and alveolar bone loss in patients with periodontitis: a retrospective study[J]. J Perio-dontal Res, 2022, 57(1): 75-84.
[54] ALHarthi SS, BinShabaib MS, Alwahibi A, et al. Periodontal and peri-implant status and whole salivary interleukin 1-beta levels among individuals using selective serotonin reuptake inhibitors: an observational study[J]. BMC Oral Health, 2023, 23(1): 310.
[55] Sun WZ, Ye B, Chen SY, et al. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges[J]. Bone Res, 2023, 11(1): 65.
[56] Shariff JA, Gurpegui Abud D, Bhave MB, et al. Selective serotonin reuptake inhibitors and dental implant failure: a systematic review and meta-analysis[J]. J Oral Implantol, 2023, 49(4): 436-443.
[57] Soares MA, Costa ALA, Silva NLC, et al. Atypical antipsychotics olanzapine and clozapine increase bone loss in female rats with experimental periodontitis[J]. J Periodontal Res, 2023, 58(2): 283-295.
[1] 陈斌, 闫福华. 刷牙方法的选择:基于循证证据的再思考[J]. 国际口腔医学杂志, 2025, 52(2): 141-147.
[2] 温星悦, 赵骏宇, 赵崇钧, 王贵欣, 黄睿洁. 壳聚糖治疗牙周病的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 416-424.
[3] 李东娜, 翟浩嫣, 刘春艳. 牙周正畸联合治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 326-336.
[4] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[5] 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36.
[6] 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730.
[7] 王冠儒,冯强. 牙龈卟啉单胞菌在阿尔兹海默症发生中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 397-403.
[8] 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348.
[9] 穆新月,刘树泰. 动机性访谈在牙周病患者临床管理中的应用进展[J]. 国际口腔医学杂志, 2022, 49(1): 94-99.
[10] 白皓亮,杨禾,赵蕾. 牙周病风险评估及预后判断工具的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 696-702.
[11] 周万航,李嫣斐,许日聪,万启军. 牙周非手术治疗对慢性肾脏病危险因素及全身炎症水平影响的Meta分析[J]. 国际口腔医学杂志, 2021, 48(5): 528-535.
[12] 沈忆芬,刘超,汤颖,顾永春. 电子烟暴露对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 347-353.
[13] 秦小茹,刘梦圆. 牙周病和心肌梗死发生风险相关性队列研究的Meta分析[J]. 国际口腔医学杂志, 2021, 48(2): 165-172.
[14] 郏乐铭,贾小玥,杨燃,周学东,徐欣. 益生菌制剂在牙周病防治中的应用进展[J]. 国际口腔医学杂志, 2020, 47(5): 515-521.
[15] 张琳琳,杜毅. 畸形舌侧沟的治疗进展[J]. 国际口腔医学杂志, 2020, 47(4): 458-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!