国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (1): 25-33.doi: 10.7518/gjkq.2025018

• 口腔肿瘤专栏 • 上一篇    下一篇

碳点在口腔颌面部恶性肿瘤的诊断及治疗中的应用

符天宇1(),张雪2,王思琪1,郭程祎1,董晓宇1,程亚鹏1,李锐3()   

  1. 1.郑州大学口腔医学院 郑州 450052
    2.郑州大学第一附属医院口腔内科 郑州 450052
    3.郑州大学第一附属医院口腔颌面外科 郑州 450052
  • 收稿日期:2024-06-15 修回日期:2024-09-02 出版日期:2025-01-01 发布日期:2025-01-11
  • 通讯作者: 李锐
  • 作者简介:符天宇,学士,Email:3129531805@qq.com

Application of carbon dots to the diagnosis and treatment of oral and maxillofacial malignant tumors

Tianyu Fu1(),Xue Zhang2,Siqi Wang1,Chengyi Guo1,Xiaoyu Dong1,Yapeng Cheng1,Rui Li3()   

  1. 1.School of Stomatology, Zhengzhou University, Zhengzhou 450052, China
    2.Dept. of Oral Medicine, the First Affilia-ted Hospital of Zhengzhou University, Zhengzhou 450052, China
    3.Dept. of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
  • Received:2024-06-15 Revised:2024-09-02 Online:2025-01-01 Published:2025-01-11
  • Contact: Rui Li

摘要:

近年来,随着纳米材料的发展和新型诊疗模式的进步,纳米医疗得到了研究者的广泛关注。碳点是一种具备荧光性能的零维纳米材料,可用于口腔癌诊疗,在提高检测灵敏度、减少药物不良反应及增强疗效上有明朗的前景,为口腔癌的诊疗提供了新的切入点。本文对基于碳点的口腔癌诊疗策略的研究进展进行综述,包括碳点在口腔癌的诊断、化学治疗、光动力治疗、光热治疗以及免疫治疗中的研究和应用,探讨碳点在口腔癌诊疗中的可行性,并对其在生物医学领域的进一步发展作出展望。

关键词: 碳点, 口腔癌, 诊断, 化学治疗, 光动力治疗, 光热治疗, 免疫治疗

Abstract:

Owing to advancements in nanomaterials and diagnostic and therapeutic modalities, nanomedicine has attracted considerable interest. Carbon dots are zero-dimensional nanomaterials with fluorescent properties and applicable to the diagnosis and treatment of oral cancer. They potentially enhance detection sensitivity, reduce adverse drug reactions, and improve therapeutic efficacy, thereby providing a new avenue for the management of oral cancer. This paper reviews progress in research on carbon-dot-based strategies for oral cancer diagnosis and treatment and their applications in chemotherapy, photodynamic therapy, photothermal therapy, and immunotherapy. It also explores the feasibility of using carbon dots in oral cancer management and potential development in the biomedical field.

Key words: carbon dots, oral cancer, diagnosis, chemotherapy, photodynamic therapy, photothermal therapy, immunotherapy

中图分类号: 

  • R739.8

图1

PDT原理示意图"

图2

PTT原理示意图"

1 钟来平, 孙坚, 郭伟, 等. 256例局部晚期口腔癌的生存分析[J]. 中国肿瘤临床, 2015, 42(4): 217-221.
Zhong LP, Sun J, Guo W, et al. Survival analysis of 256 patients with oral cancer[J]. Chin J Clin Oncol, 2015, 42(4): 217-221.
2 韩小琴, 周俊年, 李小军, 等. 以手术切除为主的序贯综合治疗方案对局部晚期口腔癌的临床疗效[J]. 中国实用乡村医生杂志, 2023, 30(12): 64-67.
Han XQ, Zhou JN, Li XJ, et al. The clinical efficacy of a sequential comprehensive treatment plan mainly based on surgical resection for locally advanced oral cancer[J]. Chin Pract J Rural Dr, 2023, 30(12): 64-67.
3 Alvi A, Johnson JT. Extracapsular spread in the clini-cally negative neck (N0): implications and outcome[J]. Otolaryngol Head Neck Surg, 1996, 114(1): 65-70.
4 Pfister DG, Spencer S, Brizel DM, et al. Head and neck cancers, version 1. 2015[J]. J Natl Compr Canc Netw, 2015, 13(7): 847-856.
5 Bewley AF, Farwell DG. Oral leukoplakia and oral cavity squamous cell carcinoma[J]. Clin Dermatol, 2017, 35(5): 461-467.
6 Li HT, He XD, Kang ZH, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed Engl, 2010, 49(26): 4430-4434.
7 Zhou JG, Booker C, Li RY, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. J Am Chem Soc, 2007, 129(4): 744-745.
8 Yang ZC, Wang M, Yong AM, et al. Intrinsically fluo-rescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the pre-sence of monopotassium phosphate[J]. Chem Commun, 2011, 47(42): 11615-11617.
9 Xu XY, Ray R, Gu YL, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40): 12736-12737.
10 Gong XJ, Lu WJ, Liu Y, et al. Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging[J]. J Mater Chem B, 2015, 3(33): 6813-6819.
11 Mewada A, Pandey S, Thakur M, et al. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging[J]. J Mater Chem B, 2014, 2(6): 698-705.
12 Yang L, Wang ZR, Wang J, et al. Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy[J]. Nanoscale, 2016, 8(12): 6801-6809.
13 Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709): 538-544.
14 Chu SY, Wang HQ, Du YX, et al. Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: visual monitoring of glutathione in human serum for health prognosis[J]. ACS Sustainable Chem Eng, 2020, 8(22): 8175-8183.
15 Li Z, Liu WD, Ni PJ, et al. Carbon dots confined in N-doped carbon as peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids[J]. Chem Eng J, 2022, 428: 131396.
16 Peng XX, Yang HP, Li CC, et al. Green and orange fluorescent carbon dots for detecting oral cancer by staining tissue sections[J]. J Nanosci Nanotechnol, 2019, 19(12): 7509-7516.
17 Behi M, Naficy S, Chandrawati R, et al. Nanoassembled peptide biosensors for rapid detection of matrilysin cancer biomarker[J]. Small, 2020, 16(16): e1905994.
18 Sri S, Kumar R, Panda AK, et al. Highly biocompa-tible, fluorescence, and zwitterionic carbon dots as a novel approach for bioimaging applications in cancerous cells[J]. ACS Appl Mater Interfaces, 2018, 10(44): 37835-37845.
19 Gao J, Zhu XH, Long Y, et al. Boronic acid-decora-ted carbon dot-based semiselective multichannel sensor array for cytokine discrimination and oral cancer diagnosis[J]. Anal Chem, 2024, 96(4): 1795-1802.
20 Sun JH, Zhang W, Zhang DY, et al. Multifunctional mesoporous silica nanoparticles as efficient transporters of doxorubicin and chlorin e6 for chemo-photodynamic combinatorial cancer therapy[J]. J Biomater Appl, 2018, 32(9): 1253-1264.
21 杨磊. 基于功能化碳点抗肿瘤药物载体的构建和性质研究[D]. 沈阳: 沈阳药科大学, 2016.
Yang L. Study on novel anti-tumor drug delivery system based on functionalized carbon dots[D]. Shen-yang: Shenyang Pharmaceutical University, 2016.
22 刘玉兰, 孟琳, 唐琪, 等. 抗坏血酸碳点通过促进自噬杀伤舌鳞癌细胞[J]. 口腔医学研究, 2018, 34(1): 35-38.
Liu YL, Meng L, Tang Q, et al. Ascorbic acid carbon dots kill tongue squamous cell carcinoma cell by promoting autophagy[J]. J Oral Sci Res, 2018, 34(1): 35-38.
23 杜方凯, 徐江生, 曾钫, 等. 基于碳点多功能纳米载药体系的制备及pH响应释药性能研究[J]. 化学学报, 2016, 74(3): 241-250.
Du FK, Xu JS, Zeng F, et al. Preparation of a multifunctional nano-carrier system based on carbon dots with pH-triggered drug release[J]. Acta Chim Sin, 2016, 74(3): 241-250.
24 Samantara AK, Maji S, Ghosh A, et al. Good’s buffer derived highly emissive carbon quantum dots: excellent biocompatible anticancer drug carrier[J]. J Mater Chem B, 2016, 4(14): 2412-2420.
25 袁一方. 碳量子点负载阿霉素靶向攻击细胞核治疗癌症的研究[D]. 北京: 中国人民解放军医学院,2018.
Yuan YF. Doxorubicin-loaded carbon dots as a no-vel drug delivery system for nucleus targeted cancer therapy[D]. Beijing: Chinese People’s Liberation Army (PLA) Medical School, 2018.
26 张万林, 李一村, 杨宏宇. 基于RNA-Seq技术初步探索顺铂在口腔鳞状细胞癌的相关耐药机制[J]. 遵义医科大学学报, 2024, 47(1): 53-61.
Zhang WL, Li YC, Yang HY. Investigating cisplatin drug resistance mechanism in oral squamous cells carcinoma through RNA-Seq technology: a preliminary study[J]. J Zunyi Med Univ, 2024, 47(1):53-61.
27 Wei Z, Yin XT, Cai Y, et al. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma[J]. Int J Nanomedicine, 2018, 13: 1505-1524.
28 唐琪. 抗坏血酸碳点诱导的自噬对口腔黏膜鳞癌KB细胞凋亡的作用研究[D]. 长春: 吉林大学, 2017.
Tang Q. Effect of autophagy induced by ascorbic acid carbon dots on apoptosis in oral squamous cell carcinoma cell line KB cells[D].Changchun: Jinlin University, 2017
29 陈李鑫. 聚多巴胺和MnO2修饰紫杉醇碳量子点协同治疗口腔鳞状细胞癌的体外研究[D].兰州: 兰州大学, 2023.
Chen LX. Synergistic treatment of squamous cell carcinoma with polydopamine and MnO2-modified paclitaxel carbon dots[D]. Lanzhou: Lanzhou University, 2023.
30 Zhang Y, Wang CX, Huang SW. Aggregation- induced emission (AIE) polymeric micelles for ima-ging-guided photodynamic cancer therapy[J]. Nanomaterials (Basel), 2018, 8(11): 921.
31 Liu ZY, Xie ZJ, Li WT, et al. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges[J]. J Nanobiotechnology, 2021, 19(1): 160.
32 Bacellar IOL, Tsubone TM, Pavani C, et al. Photodynamic efficiency: from molecular photochemistry to cell death[J]. Int J Mol Sci, 2015, 16(9): 20523-20559.
33 Tzerkovsky DA. Multiple-field interstitial photodynamic therapy of subcutaneously transplanted cholan-giocellular carcinoma RS-1 in rats[J]. Exp Oncol, 2017, 39(2): 117-120.
34 Zhu X, Wang H, Zheng LB, et al. Upconversion nanoparticle-mediated photodynamic therapy indu-ces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway[J]. Int J Nanomedicine, 2015, 10: 3719-3736.
35 Huang YY, Sharma SK, Dai TH, et al. Can nanotechnology potentiate photodynamic therapy[J]. Nano-technol Rev, 2012, 1(2): 111-146.
36 Kong TT, Liu TJ, Zhang YJ, et al. Carbon dots with intrinsic theranostic properties for photodynamic therapy of oral squamous cell carcinoma[J]. J Biomater Appl, 2022, 37(5): 850-858.
37 Li QR, Zhou RH, Xie Y, et al. Sulphur-doped carbon dots as a highly efficient nano-photodynamic agent against oral squamous cell carcinoma[J]. Cell Prolif, 2020, 53(4): e12786.
38 Nasrin A, Hassan M, Gomes VG. Two-photon active nucleus-targeting carbon dots: enhanced ROS generation and photodynamic therapy for oral cancer[J]. Nanoscale, 2020, 12(40): 20598-20603.
39 Ban QF, Bai T, Duan X, et al. Noninvasive photothermal cancer therapy nanoplatforms via integra-ting nanomaterials and functional polymers[J]. Biomater Sci, 2017, 5(2): 190-210.
40 Ha Lien NT, Phan AD, van Khanh BT, et al. Applications of mesoporous silica-encapsulated gold nanorods loaded doxorubicin in chemo-photothermal the-rapy[J]. ACS Omega, 2020, 5(32): 20231-20237.
41 Liu R, Zhang HC, Zhang FR, et al. Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy[J]. Mater Sci Eng C Mater Biol Appl, 2019, 96: 138-145.
42 Chen S, Zhu LJ, Du Z, et al. Polymer encapsulated clinical ICG nanoparticles for enhanced photothermal therapy and NIR fluorescence imaging in cervical cancer[J]. RSC Adv, 2021, 11(34): 20850-20858.
43 Das RK, Panda S, Bhol CS, et al. N-doped carbon quantum dot (NCQD)-deposited carbon capsules for synergistic fluorescence imaging and photothermal therapy of oral cancer[J]. Langmuir, 2019, 35(47): 15320-15329.
44 秦丽颖. 高稳定碳点纳米复合材料应用于舌鳞癌标记和治疗的研究[D]. 兰州: 兰州大学, 2023.
Qin LY. Application of highly stable carbon dot nanocomposites for the labeling and treatment of tongue squamous cell carcinoma[D]. Lanzhou: Lanzhou University, 2023.
45 Yu I, Dakwar A, Takabe K. Immunotherapy: recent advances and its future as a neoadjuvant, adjuvant, and primary treatment in colorectal cancer[J]. Cells, 2023, 12(2): 258.
46 Wang Z, Han J, Guo Z, et al. Ginseng-based carbon dots inhibit the growth of squamous cancer cells by increasing ferroptosis[J]. Front Oncol, 2023, 13: 1097692.
47 Zhang XL, Li HY, Yi C, et al. Host immune response triggered by graphene quantum-dot-media-ted photodynamic therapy for oral squamous cell carcinoma[J]. Int J Nanomedicine, 2020, 15: 9627-9638.
48 Fan WP, Yung B, Huang P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chem Rev, 2017, 117(22): 13566-13638.
49 Li XS, Lovell JF, Yoon J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nat Rev Clin Oncol, 2020, 17(11): 657-674.
50 李永晖. 基于卟啉及七甲川花菁染料的纳米粒子用于肿瘤的PDT和PTT联合治疗[D]. 天津: 天津大学, 2021.
Li YH. Nanoparticles based on porphyrin and heptamethine cyanine dye are used in PDT and PTT combined therapy of tumors[D]. Tianjin: Tianjin University, 2021.
51 陈巧. 基于碳点复合纳米体系的构建及其在肿瘤诊疗体系的工作研究[D]. 重庆: 重庆邮电大学, 2020.
Chen Q. Construction of carbon point composite nanosystem and its application in cancer diagnosis and treatment system[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2020.
[1] 曹梦颖,石蕊,于瀚雯,刘程程. 遥感成像技术在口腔疾病诊疗应用的研究进展[J]. 国际口腔医学杂志, 2025, 52(1): 107-116.
[2] 蒋思鑫,施雯锦,罗小波,陈谦明. 儿童病毒性口炎诊断及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 519-531.
[3] 赖思悦, 李博磊, 程磊. 光热治疗辅助根管冲洗治疗根尖周炎的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 565-571.
[4] 张宇,贾志宇,唐慧芳,张志勇,李文静,田松波. 免疫球蛋白G4相关性唾液腺炎临床特点及诊疗进展[J]. 国际口腔医学杂志, 2024, 51(2): 193-200.
[5] 刘世一, 陈中, 张素欣. 程序性死亡受体/配体免疫治疗策略在人乳头瘤病毒阳性头颈部鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 21-27.
[6] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[7] 刘洋,尹德强. 关于颌位调整方法的思考和改进[J]. 国际口腔医学杂志, 2023, 50(5): 499-505.
[8] 李奕君, 徐子昂, 李一. 前哨淋巴结在头颈部鳞状细胞癌检测的应用进展[J]. 国际口腔医学杂志, 2023, 50(5): 521-527.
[9] 戢晓,张岚,黄定明. 牙源性与非牙源性上颌窦炎鉴别诊断及其治疗方案的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 566-572.
[10] 姜玥莹,何宇添,李婷,周蓉卉. 近红外荧光探针在口腔癌诊断中应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 407-413.
[11] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[12] 夏溦瑶,罗岩坤,贾仲林. Pierre Robin序列征的精准诊断和遗传病因学研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 287-292.
[13] 林慧平,徐婷,林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145.
[14] 王太萍,石兴莲,李喆臻,刘梅,姜健红. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209.
[15] 秦艺纯,谭学莲,黄定明. 腺牙源性囊肿的临床研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 100-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!