国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (1): 18-24.doi: 10.7518/gjkq.2025003

• 数字化专栏 • 上一篇    下一篇

数字化技术在颌面部恶性肿瘤近距离照射治疗中的应用进展

孙睿哲1(),倪前伟2,高瞻2()   

  1. 1.新疆医科大学研究生院 乌鲁木齐 830054
    2.新疆军区总医院颌面外科 乌鲁木齐 830000
  • 收稿日期:2024-02-04 修回日期:2024-07-24 出版日期:2025-01-01 发布日期:2025-01-11
  • 通讯作者: 高瞻
  • 作者简介:孙睿哲,硕士,Email:sunruizhe97@163.com
  • 基金资助:
    中华口腔医学会西部口腔医学临床科研基金(CSA-W2020- 06)

Progress in the application of digital technology in brachytherapy for malignant tumors in oral and maxillofacial regions

Ruizhe Sun1(),Qianwei Ni2,Zhan Gao2()   

  1. 1.Graduate School of Xinjiang Medical University, Urumqi 830054, China
    2.Dept. of Maxillofacial Surgery, General Hospital of Xinjiang Military Command, Urumqi 830000, China
  • Received:2024-02-04 Revised:2024-07-24 Online:2025-01-01 Published:2025-01-11
  • Contact: Zhan Gao
  • Supported by:
    Chinese Stomatology Association Western Stomatology Clinical Research Foundation Project(CSA-W2020-06)

摘要:

口腔颌面部恶性肿瘤因发病部位解剖结构复杂,特别强调个体化治疗。近距离照射治疗具有适形性高、剂量分布均匀等优势,因而越来越多地被应用于口腔颌面部恶性肿瘤的治疗中。数字可视化技术、3D打印技术等多项新型数字化技术已被用作近距离照射治疗的辅助手段,用于术前方案设计、术中引导、全程剂量验证等多个环节。而人工智能、数字化病理技术仍处于试用阶段,有望在未来进一步优化近距离照射治疗模式,提高治疗有效性、安全性、可靠性,提升患者的生活质量水平。本文就数字化技术在口腔颌面部恶性肿瘤近距离照射治疗中的应用方面进行总结,为未来临床应用发展提供思路。

关键词: 口腔颌面部恶性肿瘤, 近距离照射治疗, 3D打印, 数字化病理, 人工智能

Abstract:

Oral and maxillofacial malignant tumors are particularly emphasized in individualized treatment because of the complex anatomical structure of the area. Brachytherapy has the advantages of having high conformability and uniform dose distribution and is thus increasingly used in the treatment of oral and maxillofacial malignant tumors. Digital visualization, 3D printing, and other digital technologies have been used to facilitate preoperative program design and full dose verification and provide intraoperative guidance for brachytherapy. Artificial intelligence and digital pathology technologies are still in the trial stage but are expected to further optimize the brachytherapy mode, improve the effectiveness, safety, and reliability of treatments, and enhance the quality of life of patients. This paper summarizes the application aspects of digital technologies in the treatment of oral and maxillofacial malignant tumors with brachytherapy irradiation to provide insights that will facilitate the development of clinical strategies.

Key words: malignant tumors in oral and maxillofacial regions, brachytherapy, 3D printing, digital pathology, artificial intelligence

中图分类号: 

  • R739.8
1 Du M, Nair R, Jamieson L, et al. Incidence trends of lip, oral cavity, and pharyngeal cancers: global burden of disease 1990-2017[J]. J Dent Res, 2020, 99(2): 143-151.
2 孙晋虎, 李梦. 125I放射性粒子植入在口腔颌面部恶性肿瘤治疗中的应用[J]. 口腔医学研究, 2019, 35(5): 415-418.
Sun JH, Li M. Application of 125I radioactive seed implantation in treatment of oral and maxillofacial malignant tumors[J]. J Oral Sci Res, 2019, 35(5): 415-418.
3 Cunha JAM, Flynn R, Bélanger C, et al. Brachythe-rapy future directions[J]. Semin Radiat Oncol, 2020, 30(1): 94-106.
4 Jiang P, Wang JJ, Ran WQ, et al. Five-year outcome of ultrasound-guided interstitial permanent 125I seeds implantation for local head and neck recurrent tumors: a single center retrospective study[J]. J Contemp Brachytherapy, 2019, 11(1): 28-34.
5 Yoon BC, Buch K, Cunnane ME, et al. Comparison between computed tomography and ultrasound for presurgical evaluation of oral tongue squamous cell carcinoma tumor thickness[J]. Am J Otolaryngol, 2021, 42(6): 103089.
6 Grégoire V, Guckenberger M, Haustermans K, et al. Image guidance in radiation therapy for better cure of cancer[J]. Mol Oncol, 2020, 14(7): 1470-1491.
7 Ji Z, Jiang YL, Tian SQ, et al. The effectiveness and prognostic factors of CT-guided radioactive I-125 seed implantation for the treatment of recurrent head and neck cancer after external beam radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2019, 103(3): 638-645.
8 Sajja S, Lee Y, Eriksson M, et al. Technical principles of dual-energy cone beam computed tomography and clinical applications for radiation therapy[J]. Adv Radiat Oncol, 2020, 5(1): 1-16.
9 Khodarahmi I, Haroun RR, Lee M, et al. Metal artifact reduction computed tomography of arthroplasty implants: effects of combined modeled iterative reconstruction and dual-energy virtual monoenergetic extrapolation at higher photon energies[J]. Invest Radiol, 2018, 53(12): 728-735.
10 Do TD, Melzig C, Vollherbst DF, et al. The value of iterative metal artifact reduction algorithms during antenna positioning for CT-guided microwave ablation[J]. Int J Hyperthermia, 2019, 36(1): 1223-1232.
11 Kanani A, Yazdi M, Owrangi AM, et al. Metal artifact reduction in cervix brachytherapy with titanium applicators using dual-energy CT through virtual monoenergetic images and an iterative algorithm: a phantom study[J]. Brachytherapy, 2022, 21(6): 933-942.
12 Wang Y, Kang P, He W, et al. MR-guided 125I seed implantation treatment for maxillofacial malignant tumor[J]. J Appl Clin Med Phys, 2021, 22(1): 92-99.
13 Park H, Tseng SC, Sholl LM, et al. Molecular cha-racterization and therapeutic approaches to small cell lung cancer: imaging implications[J]. Radiology, 2022, 305(3): 512-525.
14 Grégoire V, Thorwarth D, Lee JA. Molecular ima-ging-guided radiotherapy for the treatment of head-and-neck squamous cell carcinoma: does it fulfill the promises[J]. Semin Radiat Oncol, 2018, 28(1): 35-45.
15 Han XY, Fang S, Sheng R, et al. Dosimetry verification of three-dimensional printed polylactic acid template-guided precision 125I seed implantation for lung cancer using a desktop three-dimensional prin-ter[J]. J Appl Clin Med Phys, 2021, 22(10): 202-209.
16 Yang CZ, Lv ZT, Chen LX, et al. Evaluation of transrectal ultrasound-based dosimetry for brachytherapy of prostate cancer: a single-center experience[J]. J Contemp Brachytherapy, 2020, 12(4): 327-334.
17 柳炳吉, 孔宁宁, 李进英, 等. 125I放射性粒子植入治疗中晚期肺癌TPS术中优化临床应用价值[J]. 齐鲁医学杂志, 2016, 31(5): 523-524.
Liu BJ, Kong NN, Li JY, et al. Radioactive seed 125I implantation in the treatment of intermediate and advanced lung cancer: value of TPS intraoperative optimization[J]. Med J Qilu, 2016, 31(5): 523-524.
18 Wei SH, Li CX, Li MY, et al. Radioactive iodine-125 in tumor therapy: advances and future directions[J]. Front Oncol, 2021, 11: 717180.
19 Huang MW, Liu SM, Zheng L, et al. A digital model individual template and CT-guided 125I seed implants for malignant tumors of the head and neck[J]. J Radiat Res, 2012, 53(6): 973-977.
20 Chen EL, Zhang YW, Zhang HT, et al. Dosimetry study of three-dimensional print template for 125I implantation therapy[J]. Radiat Oncol, 2021, 16(1): 115.
21 Huang MW, Zhang JG, Zheng L, et al. Accuracy evaluation of a 3D-printed individual template for needle guidance in head and neck brachytherapy[J]. J Radiat Res, 2016, 57(6): 662-667.
22 葛胜优, 杨小琛, 王亚奇. 3D打印模板引导下125I粒子植入治疗口腔颌面部恶性肿瘤的应用[J]. 全科口腔医学杂志, 2018, 5(26): 8-9.
Ge SY, Yang XC, Wang YQ. Application of 125I seed implantation guided by 3D printing template in the treatment of oral and maxillofacial malignant tumors[J]. Gener J Stomatol, 2018, 5(26): 8-9.
23 朱柏霖, 何玉成, 何庄超, 等. 3D打印非共面导板复位对125I粒子植入术中穿刺准确性的影响[J]. 中国介入影像与治疗学, 2020, 17(3): 153-156.
Zhu BL, He YC, He ZC, et al. Impact of 3D prin-ting non-coplanar template reduction on puncture accuracy of 125I seeds implantation[J]. Chin J Interv Imag Ther, 2020, 17(3): 153-156.
24 方曙, 周金华, 杨涵, 等. 基于桌面级3D打印机的放射性粒子肺癌植入导板的剂量学验证[J]. 介入放射学杂志, 2020, 29(4): 397-402.
Fang S, Zhou JH, Yang H, et al. Dosimetric verification of radioactive particle implantation guide-plate printed by desktop-grade 3D printer in treating lung cancers[J]. J Interv Radiol, 2020, 29(4): 397-402.
25 彭歆. 口腔颌面外科领域人工智能的应用现状及存在问题[J]. 中华口腔医学杂志, 2023, 58(6): 527-532.
Peng X. Application and existing problems of artificial intelligence in oral and maxillofacial surgery[J]. Chin J Stomatol, 2023, 58(6): 527-532.
26 Girum KB, Lalande A, Hussain R, et al. A deep learning method for real-time intraoperative US i-mage segmentation in prostate brachytherapy[J]. Int J Comput Assist Radiol Surg, 2020, 15(9): 1467-1476.
27 Guo Z, Guo N, Gong K, et al. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network[J]. Phys Med Biol, 2019, 64(20): 205015.
28 Li ZY, Yue JH, Wang W, et al. Deep learning-based two-step organs at risk auto-segmentation model for brachytherapy planning in parotid gland carcinoma[J]. J Contemp Brachytherapy, 2022, 14(6): 527-535.
29 曾维, 周善洛, 郭际香, 等. 基于深度学习的口腔颌面部CT图像金属伪影消除与临床验证[J]. 中华口腔医学杂志, 2023, 58(6): 540-546.
Zeng W, Zhou SL, Guo JX, et al. Metal artifact reduction and clinical verification in oral and maxillofacial region based on deep learning[J]. Chin J Stomatol, 2023, 58(6): 540-546.
30 Götz TI, Lahmer G, Strnad V, et al. A tool to automatically analyze electromagnetic tracking data from high dose rate brachytherapy of breast cancer patients[J]. PLoS One, 2017, 12(9): e0183608.
31 Zhu JH, Wang J, Wang YG, et al. Prospect of robo-tic assistance for fully automated brachytherapy seed placement into skull base: experimental validation in phantom and cadaver[J]. Radiother Oncol, 2019, 131: 160-165.
32 Fanhao M, Xiaodong X, Bo Q, et al. A new multimodal, image-guided, robot-assisted, interstitial bra-chytherapy for the treatment of head and neck tumors-a preliminary study[J]. Int J Med Robot, 2020, 16(5): 1-5.
33 Classe M, Lerousseau M, Scoazec JY, et al. Perspectives in pathomics in head and neck cancer[J]. Curr Opin Oncol, 2021, 33(3): 175-183.
34 Sabdyusheva Litschauer I, Becker K, Saghafi S, et al. 3D histopathology of human tumours by fast clearing and ultramicroscopy[J]. Sci Rep, 2020, 10(1): 17619.
35 Almagro J, Messal HA, Zaw Thin M, et al. Tissue clearing to examine tumour complexity in three dimensions[J]. Nat Rev Cancer, 2021, 21(11): 718-730.
36 Horsman MR, Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy[J]. J Radiat Res, 2016, 57(S1): i90-i98.
37 Hanley R, Pagliari F, Garcia-Calderón D, et al. Radio-resistance of hypoxic tumors: exploring the effects of oxygen and X-ray radiation on non-small lung cancer cell lines[J]. Radiat Oncol, 2023, 18(1): 81.
38 Sun R, Henry T, Laville A, et al. Imaging approa-ches and radiomics: toward a new era of ultraprecision radioimmunotherapy[J]. J Immunother Cancer, 2022, 10(7): e004848.
39 Wu WJ, Li ZY, Dong S, et al. Texture analysis of pretreatment [18F]FDG PET/CT for the prognostic prediction of locally advanced salivary gland carcinoma treated with interstitial brachytherapy[J]. EJNMMI Res, 2019, 9(1): 89.
40 Famulari G, Duclos M, Enger SA. A novel 169Yb-based dynamic-shield intensity modulated brachytherapy delivery system for prostate cancer[J]. Med Phys, 2020, 47(3): 859-868.
41 Nicolae A, Semple M, Lu L, et al. Conventional vs machine learning-based treatment planning in prostate brachytherapy: results of a phase Ⅰ randomized controlled trial[J]. Brachytherapy, 2020, 19(4): 470-476.
[1] 焦明阳,周煜萃,蒋正源,刘雨欣,曲柳. 数字化导板技术在牙髓治疗领域的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 550-557.
[2] 汪云毅,朱珠,张峰. 人工智能在头影测量自动定点算法上的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 630-641.
[3] 朱可石,廖安琪,余优成. 机器学习在口腔种植学中的应用研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 491-498.
[4] 林慧平,徐婷,林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145.
[5] 唐粤亭,代佳琪,董雯萱,王虎,郭际香,游梦. 基于机器学习的牙龄评测研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 146-151.
[6] 马建斌,薛超然,王沛棋,李彬,白丁. 不同补偿间隙3D打印正颌手术𬌗板对咬合精度的影响[J]. 国际口腔医学杂志, 2022, 49(3): 296-304.
[7] 罗恩. 人工智能正颌外科的探索与临床初步应用[J]. 国际口腔医学杂志, 2022, 49(2): 125-131.
[8] 田而慷,向倩蓉,赵欣然,彭佳涵,舒睿. 口腔诊疗中人工智能的运用[J]. 国际口腔医学杂志, 2021, 48(4): 475-484.
[9] 张心驰,吴炜. 颌面骨再生领域3D打印技术及应用材料的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 677-685.
[10] 刘春煦,鲁雨晴,贾璐铭,董博,张倩倩,于海洋. 选择性激光熔融与铸造钛合金卡环的模拟摘戴固位力研究[J]. 国际口腔医学杂志, 2020, 47(2): 152-158.
[11] 王珂, 项涛, 汤亚玲, 梁新华. 3D打印技术在口腔颌面外科实验教学中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 119-124.
[12] 王静,袁荣涛,董蒨. 计算机辅助手术系统与3D打印技术在口腔颌面部缺损修复重建中的应用[J]. 国际口腔医学杂志, 2016, 43(6): 725-728.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!