国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (1): 107-116.doi: 10.7518/gjkq.2025015

• 综述 • 上一篇    下一篇

遥感成像技术在口腔疾病诊疗应用的研究进展

曹梦颖1(),石蕊2,于瀚雯3,刘程程1()   

  1. 1.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医院牙周病科 成都 610041
    2.西南医科大学附属口腔医院牙周黏膜病科 泸州 646000
    3.电子科技大学资源与环境学院 成都 611731
  • 收稿日期:2024-02-27 修回日期:2024-08-12 出版日期:2025-01-01 发布日期:2025-01-11
  • 通讯作者: 刘程程
  • 作者简介:曹梦颖,硕士,Email:15155664@qq.com
  • 基金资助:
    国家海外高层次人才计划项目(G05QNQR068);四川大学“从0到1”创新研究项目(2023SCUH0028)

Progress in research on the application of remote-sensing imaging technologies in the diagnosis and treatment of oral diseases

Mengying Cao1(),Rui Shi2,Hanwen Yu3,Chengcheng Liu1()   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.Dept. of Periodontal Mucosa, the Affiliated Stomatology Hospital, Southwest Medical University, Luzhou 646000, China
    3.School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Received:2024-02-27 Revised:2024-08-12 Online:2025-01-01 Published:2025-01-11
  • Contact: Chengcheng Liu
  • Supported by:
    National Overseas High-level Talents Program(G05QNQR068);Sichuan University ‘From 0 to 1’ Innovation Research Project(2023SCUH0028)

摘要:

遥感技术是应用传感仪器对远距离目标所辐射和反射的电磁波信息进行收集、处理并最后成像的一种探测技术。近年来,遥感技术与医学交叉融合,在疾病空间分析、精细导航定位和实时医学图像终端等领域展现了广阔的应用前景。作为一种非侵入性的技术,遥感技术不仅可以帮助医生对病灶进行高精度的定位和诊断,还可以结合人工智能等技术手段,对疾病进行预警。本文综合介绍了红外热成像技术、微波成像技术、太赫兹成像技术和高光谱成像技术等遥感成像技术应用于疾病诊疗的原理和优势,并阐述了常见遥感成像技术在龋病病变组织早期的检测、口腔癌边缘和波及范围评估、口腔软硬组织微小变化的探测等口腔诊疗中的应用现状和前景,以期为相关研究提供新思路。

关键词: 遥感成像技术, 红外热成像, 微波成像, 太赫兹成像, 高光谱成像, 龋病, 口腔癌症, 远程医疗

Abstract:

Remote-sensing technologies employ sensing instruments to collect, process, and finally image electromagnetic wave information reflected by long-distance targets. In recent years, the cross fusion of remote-sensing and medical technologies has shown broad application prospects in the fields of disease space analysis, fine navigation and posi-tioning, and real-time medical imaging. In combination with artificial intelligence and other technical means, remote-sen-sing technologies are noninvasive and not only facilitate high-precision positioning and lesion diagnosis but also provide early warning of diseases. To provide novel ideas for related research, this paper comprehensively introduces the principles and benefits of remote-sensing imaging technologies, such as infrared thermal, microwave, Terahertz, and hyperspectral imaging technologies, for disease diagnosis and treatment and describes the application status and prospects of common remote-sensing imaging technologies in the diagnosis and treatment of oral diseases, early detection of carious lesion tissues, assessment of oral cancer margins and sweeping ranges, and detection of subtle changes in soft and hard oral tissues.

Key words: remote-sensing technology, infrared thermal imaging, microwave imaging, Terahertz imaging, hyperspectral imaging, dental caries, oral cancer, telemedicine

中图分类号: 

  • R78

图1

ITR系统组成及成像原理示意图"

图2

TI系统的组成和成像原理示意图"

图3

HSI系统的组成和成像原理"

表 1

遥感技术及其医学应用"

名称原理医学应用优势
ITR热辐射和温度的对应关系对病灶进行准确识别和定位数据可视化、实时性、非侵入性、安全性
MI微波波段的电磁辐射和散射特性深层组织检测和动态监测低成本效益、无害、易操作
TI生物分子相互作用的振动频率大多在太赫兹范围内含水组织的检测和准确区分不同组织宽带、连贯性、穿透性、高的空间分辨率、低能量
HSI窄波段的影像数据技术评估血流灌注情况成像系统多样、研究对象广泛、临床诊断实用

表 2

遥感技术在口腔医学中的应用"

应用可用遥感技术优势
龋病NIRI、OCT、TI、HSI识别早期病变,发现早期龋
癌症边缘评估TI、OCT、HSI精准区分癌组织,指导手术范围及术式
异常组织探测ITR、OCT、TI、HSI对软组织进行检测,发现微小病变
口腔远程诊疗电子印模扫描仪、机器人、牙科监控系统、微型传感器实时性、高精度、远程控制
1 Bergquist R, Luvall JC, Malone JB. The changing risk of vector-borne diseases: global satellite remote sensing and geospatial surveillance at the forefront[J]. Geospat Health, 2021, 16(2). doi: 10.4081/gh. 2021.1047 .
doi: 10.4081/gh. 2021.1047
2 Xiang M, Pan A, Zhao YY, et al. Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography[J]. Opt Lett, 2021, 46(1): 29-32.
3 Nißler R, Bader O, Dohmen M, et al. Remote near infrared identification of pathogens with multiplexed nanosensors[J]. Nat Commun, 2020, 11(1): 5995.
4 Restall BS, Kedarisetti P, Haven NJM, et al. Multimodal 3D photoacoustic remote sensing and confocal fluorescence microscopy imaging[J]. J Biomed Opt, 2021, 26(9): 096501.
5 Islam SMM. Radar-based remote physiological sensing: progress, challenges, and opportunities[J]. Front Physiol, 2022, 13: 955208.
6 Ramirez-GarciaLuna JL, Rangel-Berridi K, Bartlett R, et al. Use of infrared thermal imaging for asses-sing acute inflammatory changes: a case series[J]. Cureus, 2022, 14(9): e28980.
7 De Meneck F, Santana V, Brioschi GC, et al. Infrared imaging of the brain-eyelid thermal tunnel: a promising method for measuring body temperature in afebrile children[J]. Int J Environ Res Public Health, 2023, 20(19): 6867.
8 Bechelli F. Effectiveness of REAC neuro postural and neuro psycho physical optimization in impro-ving peripheral vasospasm dysfunction: a case report[J]. Front Med Technol, 2023, 5: 1198612.
9 Jerjes W, Hamdoon Z, Yousif AA, et al. Epithelial tissue thickness improves optical coherence tomo-graphy’s ability in detecting oral cancer[J]. Photo-diagnosis Photodyn Ther, 2019, 28: 69-74.
10 Wang LY, Chen S, Liu LB, et al. Axial super-resolution optical coherence tomography via complex-va-lued network[J]. Phys Med Biol, 2023, 68(23). doi: 10.1088/1361-6560/ad0997 .
doi: 10.1088/1361-6560/ad0997
11 Adachi M, Nakagawa T, Fujioka T, et al. Feasibility of portable microwave imaging device for breast cancer detection[J]. Diagnostics, 2021, 12(1): 27.
12 Bing S, Chawang K, Chiao JC. A tuned microwave resonant system for subcutaneous imaging[J]. Sensors (Basel), 2023, 23(6): 3090.
13 Akazzim Y, Jofre M, El Mrabet O, et al. UWB-mo-dulated microwave imaging for human brain functional monitoring[J]. Sensors, 2023, 23(9): 4374.
14 Hasan S, Zamani A, Brankovic A, et al. Stroke classification with microwave signals using explainable wavelet convolutional neural network[J]. IEEE J Biomed Health Inform, 2023. doi: 10.1109/JBHI. 2023.3327296 .
doi: 10.1109/JBHI. 2023.3327296
15 Smith K, Bourqui J, Wang ZF, et al. Microwave ima-ging for monitoring breast cancer treatment: a pilot study[J]. Med Phys, 2023, 50(11): 7118-7129.
16 Ma SQ, Li ZW, Gong SX, et al. The laws and effects of terahertz wave interactions with neurons[J]. Front Bioeng Biotechnol, 2023, 11: 1147684.
17 Zhao J, Ouyang CM, Chen XY, et al. Temperature-controlled terahertz polarization conversion bandwidth[J]. Opt Express, 2021, 29(14): 21738-21748.
18 Wang Q, Chen YZ, Mao JX, et al. Metasurface-assisted terahertz sensing[J]. Sensors, 2023, 23(13): 5902.
19 Tamošiūnas V, Minkevičius L, Bučius I, et al. Design and performance of extraordinary low-cost compact terahertz imaging system based on electronic components and paraffin wax optics[J]. Sensors, 2022, 22(21): 8485.
20 Hernandez-Cardoso GG, Amador-Medina LF, Gu-tierrez-Torres G, et al. Terahertz imaging demonstrates its diagnostic potential and reveals a relationship between cutaneous dehydration and neuropathy for diabetic foot syndrome patients[J]. Sci Rep, 2022, 12(1): 3110.
21 Fan ST, Ung BSY, Parrott EPJ, et al. In vivo Terahertz reflection imaging of human scars during and after the healing process[J]. J Biophotonics, 2017, 10(9): 1143-1151.
22 Osman OB, Tan TJ, Henry S, et al. Differentiation of burn wounds in an in vivo porcine model using Terahertz spectroscopy[J]. Biomed Opt Express, 2020, 11(11): 6528-6535.
23 Zhang Z, Yang MS, Yan X, et al. The antibody-free recognition of cancer cells using plasmonic biosensor platforms with the anisotropic resonant metasurfaces[J]. ACS Appl Mater Interfaces, 2020, 12(10): 11388-11396.
24 Rong L, Latychevskaia T, Chen CH, et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue[J]. Sci Rep, 2015, 5: 8445.
25 Iomdina EN, Seliverstov SV, Teplyakova KO, et al. Terahertz scanning of the rabbit cornea with experimental UVB-induced damage: in vivo assessment of hydration and its verification[J]. J Biomed Opt, 2021, 26(4): 043010.
26 Ji Y, Park SM, Kwon S, et al. mHealth hyperspectral learning for instantaneous spatiospectral imaging of hemodynamics[J]. PNAS Nexus, 2023, 2(4): pgad1-11.
27 Grambow E, Sandkühler NA, Groß J, et al. Evaluation of hyperspectral imaging for follow-up assessment after revascularization in peripheral artery di-sease[J]. J Clin Med, 2022, 11(3): 758.
28 Thiem DGE, Frick RW, Goetze E, et al. Hyperspectral analysis for perioperative perfusion monitoring-a clinical feasibility study on free and pedicled flaps[J]. Clin Oral Investig, 2021, 25(3): 933-945.
29 Heimes D, Becker P, Thiem DGE, et al. Is hyperspectral imaging suitable for assessing collateral circulation prior radial forearm free flap harvesting? Comparison of hyperspectral imaging and conventional allen’s test[J]. J Pers Med, 2021, 11(6): 531.
30 Avraham M, Nemirovsky J, Blank T, et al. Toward an accurate IR remote sensing of body temperature radiometer based on a novel IR sensing system dubbed digital TMOS[J]. Micromachines, 2022, 13(5): 703.
31 Ecclestone BR, Bell K, Abbasi S, et al. Improving maximal safe brain tumor resection with photoacoustic remote sensing microscopy[J]. Sci Rep, 2020, 10(1): 17211.
32 Vanella V, Castagnola R, Marigo L, et al. A comparison of near-infrared imaging with other diagnostic tools for dental caries[J]. Minerva Dent Oral Sci, 2021, 70(5): 214-222.
33 Yavuz BS, Kargul B. Comparative evaluation of the spectral-domain optical coherence tomography and microhardness for remineralization of enamel caries lesions[J]. Dent Mater J, 2021, 40(5): 1115-1121.
34 陈宸, 吴芳龙, 周红梅, 等. 太赫兹光谱和成像技术在口腔医学中应用的研究进展[J]. 四川大学学报(医学版), 2023, 54(1): 203-207.
Chen C, Wu FL, Zhou HM, et al. Research progress in the application of Terahertz spectroscopy and ima-ging technology in stomatology[J]. J Sichuan Univ (Med Sci), 2023, 54(1): 203-207.
35 Cai JH, Guang MK, Zhou JP, et al. Dental caries dia-gnosis using terahertz spectroscopy and birefringence[J]. Opt Express, 2022, 30(8): 13134-13147.
36 Kamburoğlu K, Karagöz B, Altan H, et al. An ex vivo comparative study of occlusal and proximal ca-ries using terahertz and X-ray imaging[J]. Dentoma-xillofac Radiol, 2019, 48(2): 20180250.
37 Abdel Gawad AL, El-Sharkawy Y, Ayoub HS, et al. Classification of dental diseases using hyperspectral imaging and laser induced fluorescence[J]. Photo-diagnosis Photodyn Ther, 2019, 25: 128-135.
38 Sim YC, Park JY, Ahn KM, et al. Terahertz imaging of excised oral cancer at frozen temperature[J]. Biomed Opt Express, 2013, 4(8): 1413-1421.
39 Lu GL, Wang DS, Qin XL, et al. Detection and delineation of squamous neoplasia with hyperspectral imaging in a mouse model of tongue carcinogenesis[J]. J Biophotonics, 2018, 11(3): 10.1002/jbio. 2017-00078.
40 Brouwer de Koning SG, Weijtmans P, Karakullukcu MB, et al. Toward assessment of resection margins using hyperspectral diffuse reflection imaging (400-1,700 nm) during tongue cancer surgery[J]. Lasers Surg Med, 2020, 52(6): 496-502.
41 Trajanovski S, Shan CF, Weijtmans PJC, et al. Tongue tumor detection in hyperspectral images u-sing deep learning semantic segmentation[J]. IEEE Trans Biomed Eng, 2021, 68(4): 1330-1340.
42 Zhou XM, Ma L, Halicek M, et al. Development of a new polarized hyperspectral imaging microscope[J]. Proc SPIE Int Soc Opt Eng, 2020, 11213: 1121308.
43 Aboushady MA, Talaat W, Hamdoon Z, et al. Thermography as a non-ionizing quantitative tool for dia-gnosing periapical inflammatory lesions[J]. BMC Oral Health, 2021, 21(1): 260.
44 Thapa D, Tavakolian P, Zhou G, et al. Three-dimensional thermophotonic super-resolution imaging by spatiotemporal diffusion reversal method[J]. Sci Adv, 2023, 9(51): eadi1899.
45 Zidane B. Recent advances in the diagnosis of enamel cracks: a narrative review[J]. Diagnostics, 2022, 12(8): 2027.
46 Le N, Lu J, Tang PJ, et al. Intraoral optical cohe-rence tomography and angiography combined with autofluorescence for dental assessment[J]. Biomed Opt Express, 2022, 13(6): 3629-3646.
47 Wang G, Le NM, Hu XH, et al. Semi-automated re-gistration and segmentation for gingival tissue vo-lume measurement on 3D OCT images[J]. Biomed Opt Express, 2020, 11(8): 4536-4547.
48 Thiem DGE, Römer P, Gielisch M, et al. Hyperspectral imaging and artificial intelligence to detect oral malignancy-part 1-automated tissue classification of oral muscle, fat and mucosa using a light-weight 6-layer deep neural network[J]. Head Face Med, 2021, 17(1): 38.
49 Urban BE, Subhash HM. Multimodal hyperspectral fluorescence and spatial frequency domain imaging for tissue health diagnostics of the oral cavity[J]. Biomed Opt Express, 2021, 12(11): 6954-6968.
50 Laimer J, Bruckmoser E, Helten T, et al. Hyperspectral imaging as a diagnostic tool to differentiate between amalgam tattoos and other dark pigmented intraoral lesions[J]. J Biophotonics, 2021, 14(2): e202000424.
51 Kim RJ, Benic GI, Park JM. Trueness of digital intraoral impression in reproducing multiple implant position[J]. PLoS One, 2019, 14(11): e0222070.
52 Ogawa K, Ishida Y, Kuwajima Y, et al. Accuracy of a method to monitor root position using a 3D digital crown/root model during orthodontic treatments[J]. Tomography, 2022, 8(2): 550-559.
53 Wei DH, Di P, Tian JH, et al. Evaluation of intraoral digital impressions for obtaining gingival contour in the esthetic zone: accuracy outcomes[J]. Clin Oral Investig, 2020, 24(4): 1401-1410.
54 Ntovas P, Pashias A, Vassilopoulos S, et al. Esthetic rehabilitation through crown lengthening and laminate veneers. A digital workflow[J]. Int J Esthet Dent, 2023, 18(4): 330-344.
55 Bhambhani R, Bhattacharya J, Sen SK. Digitization and its futuristic approach in prosthodontics[J]. J Indian Prosthodont Soc, 2013, 13(3): 165-174.
56 Grewal B, Lee RT, Zou L, et al. Royal London space analysis: plaster versus digital model assessment[J]. Eur J Orthod, 2017, 39(3): 320-325.
57 Blanco-Plard A, Hernandez A, Pino F, et al. 3D accuracy of a conventional method versus three digital scanning strategies for completely edentulous maxillary implant impressions[J]. Int J Oral Maxillofac Implants, 2023, 38(6): 1211-1219.
58 Ke Y, Zhang Y, Tian S, et al. Accuracy of digital implant impressions using a novel structured light scanning system assisted by a planar mirror in the edentulous maxilla: an in vitro study[J]. Clin Oral Implants Res, 2024, 35(8): 876-887.
59 Bolding SL, Reebye UN. Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches[J]. J Prosthet Dent, 2022, 128(4): 639-647.
60 Xu ZH, Xiao YJ, Zhou L, et al. Accuracy and efficiency of robotic dental implant surgery with diffe-rent human-robot interactions: an in vitro study[J]. J Dent, 2023, 137: 104642.
61 Zhou L, Ding JM, Xiao YJ, et al. Autogenous bone block osteotomy in the chin using a robotic system: a clinical report[J]. J Prosthet Dent, 2023: S0022-S3913(23)00764-3.
62 Li YZ, Cheng JH, Mei HX, et al. CLPNet: cleft lip and palate surgery support with deep learning[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin: IEEE, 2019: 3666-3672 .
63 Caruso S, Caruso S, Pellegrino M, et al. A know-ledge-based algorithm for automatic monitoring of orthodontic treatment: the dental monitoring system. Two cases[J]. Sensors (Basel), 2021, 21(5): 1856.
64 Ackerman MB, McRae MS, Longley WH. Microsensor technology to help monitor removable ap-pliance wear[J]. Am J Orthod Dentofacial Orthop, 2009, 135(4): 549-551.
[1] 高若凡,夏斌. 基于慢性疾病管理理念的重度低龄儿童龋管理方法[J]. 国际口腔医学杂志, 2023, 50(3): 341-346.
[2] 龚涛,李雨庆,周学东. 变异链球菌糖转运及其调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 506-510.
[3] 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396.
[4] 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219.
[5] 刘程程, 丁一. 妊娠期常见口腔感染性疾病的临床诊疗和管理策略[J]. 国际口腔医学杂志, 2021, 48(6): 621-628.
[6] 范宇,程磊. 吸烟影响口腔微环境及其在龋病进展中的作用[J]. 国际口腔医学杂志, 2021, 48(5): 609-613.
[7] 杨志雷,刘宝盈. 龋病牙菌斑微生态研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 506-514.
[8] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[9] 陈艳艳,彭显,周学东,程磊. 定量光导荧光技术在龋病及牙周疾病诊治中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 699-704.
[10] 王晓波,林世耀,李霞. 母亲与儿童龋病关系的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 469-474.
[11] 王静,王艳,王川东,黄睿洁,田燕,胡玮,邹静. 甘草及其提取物在防治口腔感染相关疾病中的应用[J]. 国际口腔医学杂志, 2018, 45(5): 546-552.
[12] 丁杰, 宋光泰. 微创技术在儿童龋病治疗中的应用[J]. 国际口腔医学杂志, 2018, 45(4): 473-479.
[13] 郑黎薇, 邹静, 夏斌, 刘英群, 黄洋, 赵今. 儿童乳磨牙金属预成冠的修复治疗[J]. 国际口腔医学杂志, 2017, 44(2): 125-129.
[14] 王玉霞,周学东,李明云. 韦荣球菌与龋病和链球菌间的关系[J]. 国际口腔医学杂志, 2017, 44(2): 195-199.
[15] 刘诗雨,何金枝,李明云. 白假丝酵母菌与龋病的相关性及其致龋机制[J]. 国际口腔医学杂志, 2017, 44(1): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!