国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 512-519.doi: 10.7518/gjkq.2021090
Ma Xiaofang1(),Huang Yongqing2,Shi Bing3,Ma Jian2(
)
摘要:
唇腭裂(CL/P)是最为常见的颅颌面部先天性畸形之一。该病的病因非常复杂,它被认为主要是由遗传与环境因素共同作用导致的遗传性疾病。双生子具有相似的遗传信息且共享环境因素,因而被认为是研究遗传性疾病病因学的理想模型。本文就双生子的分类及鉴别、双生子模型的优势及用途,以及双生子模型在唇腭裂易感基因筛选中的应用进展作一综述,以期为更深入地探讨唇腭裂的病因提供新思路。
中图分类号:
[1] |
Dixon MJ, Marazita ML, Beaty TH, et al. Cleft lip and palate: understanding genetic and environmental influences[J]. Nat Rev Genet, 2011, 12(3):167-178.
doi: 10.1038/nrg2933 |
[2] |
Kling RR, Taub PJ, Ye XQ, et al. Oral clefting in China over the last decade: 205 679 patients[J]. Plast Reconstr Surg Glob Open, 2014, 2(10):e236.
doi: 10.1097/GOX.0000000000000186 |
[3] | Duan SJ, Shi JY, Shi B, et al. Association analysis of GWAS hits and non-syndromic cleft lip with/without palate with cleft alveolar in Han population of Western China[J]. Int J Clin Exp Pathol, 2020, 13(10):2576-2585. |
[4] |
Impellizzeri A, Giannantoni I, Polimeni A, et al. Epidemiological characteristic of orofacial clefts and its associated congenital anomalies: retrospective study[J]. BMC Oral Health, 2019, 19(1):290.
doi: 10.1186/s12903-019-0980-5 pmid: 31870360 |
[5] | Velázquez-Aragón JA, González-Del Angel A, Al-cántara-Ortigoza MA, et al. Screening of IRF6 variants in patients subjected to genetic association studies for nonsyndromic cleft lip/palate[J]. Cleft Palate Craniofac J, 2020: 1055665620980238. |
[6] |
Grosen D, Bille C, Petersen I, et al. Risk of oral clefts in twins[J]. Epidemiology, 2011, 22(3):313-319.
doi: 10.1097/EDE.0b013e3182125f9c |
[7] |
Christensen K, Fogh-Andersen P. Cleft lip (+/- cleft palate) in Danish twins, 1970-1990[J]. Am J Med Genet, 1993, 47(6):910-916.
doi: 10.1002/(ISSN)1096-8628 |
[8] |
Kocaaslan FND, Sendur S, Koçak I, et al. The comparison of Pierre Robin sequence and non-syndromic cleft palate[J]. J Craniofac Surg, 2020, 31(1):226-229.
doi: 10.1097/SCS.0000000000005961 pmid: 31725501 |
[9] |
Antwi P, Hong CS, Duran D, et al. A novel association of campomelic dysplasia and hydrocephalus with an unbalanced chromosomal translocation upstream of SOX9[J]. Cold Spring Harb Mol Case Stud, 2018, 4(3):a002766.
doi: 10.1101/mcs.a002766 |
[10] |
Gordon CT, Chopra M, Oufadem M, et al. MED13L loss-of-function variants in two patients with syndromic Pierre Robin sequence[J]. Am J Med Genet A, 2018, 176(1):181-186.
doi: 10.1002/ajmg.a.v176.1 |
[11] |
Dash S, Bhatt S, Falcon KT, et al. Med23 regulates Sox9 expression during craniofacial development[J]. J Dent Res, 2021, 100(4):406-414.
doi: 10.1177/0022034520969109 pmid: 33155500 |
[12] |
Ceribelli A, Selmi C. Epigenetic methods and twin studies[J]. Adv Exp Med Biol, 2020, 1253:95-104.
doi: 10.1007/978-981-15-3449-2_3 pmid: 32445092 |
[13] | Scapoli L, Carinci F, Palmieri A, et al. Copy number variation analysis of twin pairs discordant for cleft lip with or without cleft palate[J]. Int J Immunopathol Pharmacol, 2019, 33:2058738419855873. |
[14] |
Craig JM, Calais-Ferreira L, Umstad MP, et al. The value of twins for health and medical research: a third of a century of progress[J]. Twin Res Hum Genet, 2020, 23(1):8-15.
doi: 10.1017/thg.2020.4 |
[15] |
McNamara HC, Kane SC, Craig JM, et al. A review of the mechanisms and evidence for typical and atypical twinning[J]. Am J Obstet Gynecol, 2016, 214(2):172-191.
doi: S0002-9378(15)02235-8 pmid: 26548710 |
[16] |
Tan QH, Christiansen L, von Bornemann Hjelmborg J, et al. Twin methodology in epigenetic studies[J]. J Exp Biol, 2015, 218(Pt 1):134-139.
doi: 10.1242/jeb.107151 |
[17] | Harika DJ, Sridevi E, Sai Sankar AJ, et al. Dermatoglyphic analysis in parents with cleft children: a comparative study[J]. Contemp Clin Dent, 2018, 9(Suppl 2):S291-S298. |
[18] |
Neiswanger K, Mukhopadhyay N, Rajagopalan S, et al. Individuals with nonsyndromic orofacial clefts have increased asymmetry of fingerprint patterns[J]. PLoS One, 2020, 15(3):e0230534.
doi: 10.1371/journal.pone.0230534 |
[19] |
Altarescu G, Renbaum P, Eldar-Geva T, et al. Preventing mucopolysaccharidosis type Ⅱ (Hunter syndrome): PGD and establishing a Hunter (46, XX) stem cell line[J]. Prenat Diagn, 2011, 31(9):853-860.
doi: 10.1002/pd.2786 |
[20] |
Wang LF, Yang Y, Zhang XN, et al. Tri-allelic pattern of short tandem repeats identifies the murderer among identical twins and suggests an embryonic mutational origin[J]. Forensic Sci Int Genet, 2015, 16:239-245.
doi: 10.1016/j.fsigen.2015.01.010 |
[21] |
Abu-Halima M, Weidinger J, Poryo M, et al. Micro-RNA signatures in monozygotic twins discordant for congenital heart defects[J]. PLoS One, 2019, 14(12):e0226164.
doi: 10.1371/journal.pone.0226164 |
[22] |
Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations[J]. Nat Rev Genet, 2012, 13(5):358-369.
doi: 10.1038/nrg3198 pmid: 22510765 |
[23] |
Xiao C, Pan C, Liu EL, et al. Differences of micro-RNA expression profiles between monozygotic twins’ blood samples[J]. Forensic Sci Int Genet, 2019, 41:152-158.
doi: 10.1016/j.fsigen.2019.05.003 |
[24] |
Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues[J]. BMC Genomics, 2007, 8:166.
pmid: 17565689 |
[25] |
Derks EM, Dolan CV, Boomsma DI. A test of the equal environment assumption (EEA) in multivariate twin studies[J]. Twin Res Hum Genet, 2006, 9(3):403-411.
pmid: 16790150 |
[26] |
Castillo-Fernandez JE, Spector TD, Bell JT. Epigenetics of discordant monozygotic twins: implications for disease[J]. Genome Med, 2014, 6(7):60.
doi: 10.1186/s13073-014-0060-z pmid: 25484923 |
[27] |
Deng CF, Dai L, Yi L, et al. Temporal trends in the birth rates and perinatal mortality of twins: a population-based study in China[J]. PLoS One, 2019, 14(1):e0209962.
doi: 10.1371/journal.pone.0209962 |
[28] |
Ananth CV, Chauhan SP. Epidemiology of twinning in developed countries[J]. Semin Perinatol, 2012, 36(3):156-161.
doi: 10.1053/j.semperi.2012.02.001 pmid: 22713495 |
[29] |
Mills MC, Rahal C. The GWAS Diversity Monitor tracks diversity by disease in real time[J]. Nat Genet, 2020, 52(3):242-243.
doi: 10.1038/s41588-020-0580-y |
[30] |
Dehghan A. Genome-wide association studies[J]. Methods Mol Biol, 2018, 1793:37-49.
doi: 10.1007/978-1-4939-7868-7_4 pmid: 29876890 |
[31] |
Takahashi M, Hosomichi K, Yamaguchi T, et al. Exploration of genetic factors determining cleft side in a pair of monozygotic twins with mirror-image cleft lip and palate using whole-genome sequencing and comparison of craniofacial morphology[J]. Arch Oral Biol, 2018, 96:33-38.
doi: S0003-9969(18)30382-0 pmid: 30172943 |
[32] |
Bell JT, Saffery R. The value of twins in epigenetic epidemiology[J]. Int J Epidemiol, 2012, 41(1):140-150.
doi: 10.1093/ije/dyr179 |
[33] |
Mangiola F, Ianiro G, Franceschi F, et al. Gut microbiota in autism and mood disorders[J]. World J Gastroenterol, 2016, 22(1):361-368.
doi: 10.3748/wjg.v22.i1.361 |
[34] |
Ding HT, Taur Y, Walkup JT. Gut microbiota and autism: key concepts and findings[J]. J Autism Dev Disord, 2017, 47(2):480-489.
doi: 10.1007/s10803-016-2960-9 |
[35] | Imamura A, Morimoto Y, Ono S, et al. Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies[J]. J Neural Transm (Vienna), 2020, 127(11):1501-1515. |
[36] |
Li L, Huang LH, Lin SB, et al. Discordant phenotypes in monozygotic twins with 16p11.2 microdeletions including the SH2B1 gene[J]. Am J Med Genet A, 2017, 173(8):2284-2288.
doi: 10.1002/ajmg.a.38284 pmid: 28544142 |
[37] | Gomes MS, Monterroso J, Brandão O, et al. Monochorionic twin discordance for horseshoe lung and tricuspid atresia[J]. Fetal Pediatr Pathol, 2020: 1-7. |
[38] |
Jonsson H, Magnusdottir E, Eggertsson HP, et al. Differences between germline genomes of monozygotic twins[J]. Nat Genet, 2021, 53(1):27-34.
doi: 10.1038/s41588-020-00755-1 pmid: 33414551 |
[39] |
Vadgama N, Pittman A, Simpson M, et al. De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes[J]. Eur J Hum Genet, 2019, 27(7):1121-1133.
doi: 10.1038/s41431-019-0376-7 pmid: 30886340 |
[40] |
Hannon E, Knox O, Sugden K, et al. Characterizing genetic and environmental influences on variable DNA methylation using monozygotic and dizygotic twins[J]. PLoS Genet, 2018, 14(8):e1007544.
doi: 10.1371/journal.pgen.1007544 |
[41] |
Castillo-Fernandez JE, Spector TD, Bell JT. Epigenetics of discordant monozygotic twins: implications for disease[J]. Genome Med, 2014, 6(7):60.
doi: 10.1186/s13073-014-0060-z pmid: 25484923 |
[42] | Feng L, Lou J. DNA methylation analysis[J]. Methods Mol Biol, 2019, 1894:181-227. |
[43] | Mill J, Heijmans BT. From promises to practical strategies in epigenetic epidemiology[J]. Nat Rev Genet, 2013, 14(8):585-594. |
[44] |
Alvizi L, Ke XY, Brito LA, et al. Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects[J]. Sci Rep, 2017, 7(1):2441.
doi: 10.1038/s41598-017-02721-0 pmid: 28550290 |
[45] |
Li WL, Christiansen L, Hjelmborg J, et al. On the power of epigenome-wide association studies using a disease-discordant twin design[J]. Bioinformatics, 2018, 34(23):4073-4078.
doi: 10.1093/bioinformatics/bty532 |
[46] |
van Dongen J, Slagboom PE, Draisma HH, et al. The continuing value of twin studies in the omics era[J]. Nat Rev Genet, 2012, 13(9):640-653.
doi: 10.1038/nrg3243 pmid: 22847273 |
[47] |
Sunny AP, Arunachal G, Danda S. Van der Woude syndrome: IRF6 mutations[J]. Indian J Pediatr, 2019, 86(11):1070-1071.
doi: 10.1007/s12098-019-03058-4 pmid: 31468312 |
[48] | Alade AA, Buxo-Martinez CJ, Mossey PA, et al. Non-random distribution of deleterious mutations in the DNA and protein-binding domains of IRF6 are associated with Van der Woude syndrome[J]. Mol Genet Genomic Med, 2020, 8(8):e1355. |
[49] |
Peyrard-Janvid M, Leslie EJ, Kousa YA, et al. Dominant mutations in GRHL3 cause Van der Woude syndrome and disrupt oral periderm development[J]. Am J Hum Genet, 2014, 94(1):23-32.
doi: 10.1016/j.ajhg.2013.11.009 pmid: 24360809 |
[50] |
Schwartz E, Wilkens A, Noon SE, et al. A de novo SATB2 mutation in monozygotic twins with cleft palate, dental anomalies, and developmental delay[J]. Am J Med Genet A, 2017, 173(3):809-812.
doi: 10.1002/ajmg.a.38071 pmid: 28211976 |
[51] |
Zarate YA, Kalsner L, Basinger A, et al. Genotype and phenotype in 12 additional individuals with SATB2-associated syndrome[J]. Clin Genet, 2017, 92(4):423-429.
doi: 10.1111/cge.12982 pmid: 28139846 |
[52] | Li W, Chung CYL, Wang CC, et al. Monochorionic twins with selective fetal growth restriction: insight from placental whole-transcriptome analysis[J]. Am J Obstet Gynecol, 2020, 223(5): 749.e1-749.e16. |
[53] | Sukhwani M, Antolín E, Herrero B, et al. Management and perinatal outcome of selective intrauterine growth restriction in monochorionic pregnancies[J]. J Matern Fetal Neonatal Med, 2019: 1-6. |
[54] |
Zur RL, Kingdom JC, Parks WT, et al. The placental basis of fetal growth restriction[J]. Obstet Gynecol Clin North Am, 2020, 47(1):81-98.
doi: 10.1016/j.ogc.2019.10.008 |
[55] | Regina Altoé S, Borges ÁH, Neves ATSC, et al. Influence of parental exposure to risk factors in the occurrence of oral clefts[J]. J Dent (Shiraz), 2020, 21(2):119-126. |
[56] |
Liu LJ, Wang LL, Ni WL, et al. Rare earth elements in umbilical cord and risk for orofacial clefts[J]. Ecotoxicol Environ Saf, 2021, 207:111284.
doi: 10.1016/j.ecoenv.2020.111284 |
[57] |
Martelli DR, Coletta RD, Oliveira EA, et al. Association between maternal smoking, gender, and cleft lip and palate[J]. Braz J Otorhinolaryngol, 2015, 81(5):514-519.
doi: 10.1016/j.bjorl.2015.07.011 |
[58] | Grunert M, Appelt S, Grossfeld P, et al. The needle in the haystack-searching for genetic and epigenetic differences in monozygotic twins discordant for tetralogy of fallot[J]. J Cardiovasc Dev Dis, 2020, 7(4):E55. |
[59] |
Hasan A, Afzal M. Gene and environment interplay in cognition: evidence from twin and molecular studies, future directions and suggestions for effective candidate gene x environment (cGxE) research[J]. Mult Scler Relat Disord, 2019, 33:121-130.
doi: 10.1016/j.msard.2019.05.005 |
[1] | 夏溦瑶,贾仲林. 维生素与唇腭裂发生相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 632-638. |
[2] | 万雪丽,石永乐,张秀芬,王欢,田莉. 唇腭裂患儿全身麻醉苏醒期躁动多维干预体系的构建研究[J]. 国际口腔医学杂志, 2023, 50(3): 272-278. |
[3] | 陈卓,石冰,李精韬. 唇腭裂患者外鼻生长特征的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 279-286. |
[4] | 裴玲,曾妮,杨超,何苗,罗强,石冰,郑谦. 辅助局部麻醉对唇腭裂整复术后镇痛效果的研究[J]. 国际口腔医学杂志, 2022, 49(6): 657-662. |
[5] | 黄艺璇,石冰,李精韬. 唇腭裂患者鼻通气功能的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 453-461. |
[6] | 张琦,范存晖,杨茜,李然,徐晓琳,丁玮,王文惠,杨彩秀. 替牙期骨性Ⅲ类单侧完全性唇腭裂与非唇腭裂患者牙弓形态的对比研究[J]. 国际口腔医学杂志, 2022, 49(2): 144-152. |
[7] | 孙嘉琳,林岩松,石冰,贾仲林. 5种常见综合征型唇腭裂遗传学研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 718-724. |
[8] | 吴敏,石冰. 唇腭裂婴儿母乳喂养的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 269-273. |
[9] | 侯亚丽,马利. 亚洲人群干扰素调节因子6基因多态性与非综合征型唇腭裂相关性研究的Meta分析[J]. 国际口腔医学杂志, 2020, 47(4): 397-405. |
[10] | 吕靖,彭静,栗璞. 双生子颅面深度和上气道宽度的遗传和环境因素研究[J]. 国际口腔医学杂志, 2020, 47(2): 175-181. |
[11] | 宋少华,莫水学. 唇腭裂患者序列治疗中的正畸治疗[J]. 国际口腔医学杂志, 2019, 46(6): 740-744. |
[12] | 邓程丹,石冰,李杨. 唇腭裂患者的脑部结构与功能研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 617-620. |
[13] | 刘丹,毛渤淳,雒如燕,崔珂,石冰,龚彩霞. 唇腭裂患者家庭抗逆力及其影响因素[J]. 国际口腔医学杂志, 2019, 46(3): 297-301. |
[14] | 刘育豪,白娜,程梦龙,石冰,李芷慧,龚彩霞. 视频示范法对围手术期唇腭裂患儿父母的心理干预效果分析[J]. 国际口腔医学杂志, 2019, 46(1): 26-29. |
[15] | 刘双, 李纾. 表观遗传学及其调控与牙周病[J]. 国际口腔医学杂志, 2017, 44(5): 523-527. |
|