国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (6): 718-724.doi: 10.7518/gjkq.2021095
Sun Jialin(),Lin Yansong,Shi Bing,Jia Zhonglin()
摘要:
唇腭裂是最常见的先天畸形之一。根据是否伴有全身其他部位的先天疾病,可分为非综合征型唇腭裂和综合征型唇腭裂。研究发现非综合征型唇腭裂为多因素遗传病,同时受多种遗传和环境危险因素的影响。而综合征型唇腭裂人群发病率相对较低,为单基因病,符合孟德尔遗传定律,呈明显的家族遗传性,且大多有明确的致病基因。本文将就5种发病率较高,较为常见的综合征型唇腭裂近年来遗传学方面的进展进行介绍,为将来综合征型唇腭裂遗传研究提供参考。
中图分类号:
[1] |
Dixon MJ, Marazita ML, Beaty TH, et al. Cleft lip and palate: understanding genetic and environmental influences[J]. Nat Rev Genet, 2011, 12(3):167-178.
doi: 10.1038/nrg2933 |
[2] |
Burdick AB. Genetic epidemiology and control of genetic expression in Van der Woude syndrome[J]. J Craniofac Genet Dev Biol Suppl, 1986, 2:99-105.
pmid: 3491128 |
[3] |
Burdick AB, Bixler D, Puckett CL. Genetic analysis in families with Van der Woude syndrome[J]. J Craniofac Genet Dev Biol, 1985, 5(2):181-208.
pmid: 4019732 |
[4] |
Malik S, Wilcox ER, Naz S. Novel lip pit phenotypes and mutations of IRF6 in Van der Woude syndrome patients from Pakistan[J]. Clin Genet, 2014, 85(5):487-491.
doi: 10.1111/cge.12207 pmid: 23713753 |
[5] | Alade AA, Buxo-Martinez CJ, Mossey PA, et al. Non-random distribution of deleterious mutations in the DNA and protein-binding domains of IRF6 are associated with Van der Woude syndrome[J]. Mol Genet Genomic Med, 2020, 8(8):e1355. |
[6] | Leslie EJ, Standley J, Compton J, et al. Comparative analysis of IRF6 variants in families with Van der Woude syndrome and popliteal pterygium syndrome using public whole-exome databases[J]. Ge-net Med, 2013, 15(5):338-344. |
[7] |
Parada-Sanchez MT, Chu EY, Cox LL, et al. Disrupted IRF6-NME1/2 complexes as a cause of cleft lip/palate[J]. J Dent Res, 2017, 96(11):1330-1338.
doi: 10.1177/0022034517723615 pmid: 28767310 |
[8] |
Liu H, Leslie EJ, Jia ZL, et al. Irf6 directly regulates Klf17 in zebrafish periderm and Klf4 in murine oral epithelium, and dominant-negative KLF4 variants are present in patients with cleft lip and palate[J]. Hum Mol Genet, 2016, 25(4):766-776.
doi: 10.1093/hmg/ddv614 |
[9] |
Kousa YA, Roushangar R, Patel N, et al. IRF6 and SPRY4 signaling interact in periderm development[J]. J Dent Res, 2017, 96(11):1306-1313.
doi: 10.1177/0022034517719870 pmid: 28732181 |
[10] | Leslie EJ, Mancuso JL, Schutte BC, et al. Search for genetic modifiers of IRF6 and genotype-phenotype correlations in Van der Woude and popliteal ptery-gium syndromes[J]. Am J Med Genet A, 2013, 161A(10):2535-2544. |
[11] |
Peyrard-Janvid M, Leslie EJ, Kousa YA, et al. Do-minant mutations in GRHL3 cause Van der Woude Syndrome and disrupt oral periderm development[J]. Am J Hum Genet, 2014, 94(1):23-32.
doi: 10.1016/j.ajhg.2013.11.009 pmid: 24360809 |
[12] |
Carpinelli MR, de Vries ME, Jane SM, et al. Grainy-head-like transcription factors in craniofacial deve-lopment[J]. J Dent Res, 2017, 96(11):1200-1209.
doi: 10.1177/0022034517719264 pmid: 28697314 |
[13] |
Degen M, Girousi E, Feldmann J, et al. A novel Van der woude syndrome-causing IRF6 variant is subject to incomplete non-sense-mediated mRNA decay affecting the phenotype of keratinocytes[J]. Front Cell Dev Biol, 2020, 8:583115.
doi: 10.3389/fcell.2020.00583 |
[14] | Karbarz M. Consequences of 22q11.2 microdeletion on the genome, individual and population levels[J]. Genes (Basel), 2020, 11(9):E977. |
[15] | Martucciello S, Turturo MG, Bilio M, et al. A dual role for Tbx1 in cardiac lymphangiogenesis through genetic interaction with Vegfr3[J]. FASEB J, 2020, 34(11):15062-15079. |
[16] | Motahari Z, Maynard TM, Popratiloff A, et al. Aberrant early growth of individual trigeminal sensory and motor axons in a series of mouse genetic mo-dels of 22q11.2 deletion syndrome[J]. Hum Mol Ge-net, 2020, 29(18):3081-3093. |
[17] |
Edelmann L, Pandita RK, Morrow BE. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome[J]. Am J Hum Genet, 1999, 64(4):1076-1086.
pmid: 10090893 |
[18] |
Shaikh TH, Kurahashi H, Saitta SC, et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis[J]. Hum Mol Genet, 2000, 9(4):489-501.
pmid: 10699172 |
[19] |
Baumer A, Riegel M, Schinzel A. Non-random asynchronous replication at 22q11.2 favours unequal meio-tic crossovers leading to the human 22q11.2 deletion[J]. J Med Genet, 2004, 41(6):413-420.
pmid: 15173225 |
[20] |
McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome)[J]. Medicine (Baltimore), 2011, 90(1):1-18.
doi: 10.1097/MD.0b013e3182060469 |
[21] |
Lopez-Rivera E, Liu YP, Verbitsky M, et al. Genetic drivers of kidney defects in the DiGeorge syndrome[J]. N Engl J Med, 2017, 376(8):742-754.
doi: 10.1056/NEJMoa1609009 |
[22] | Lin A, Ching CRK, Vajdi A, et al. Mapping 22q11.2 gene dosage effects on brain morphometry[J]. J Neu-rosci, 2017, 37(26):6183-6199. |
[23] | Voll SL, Boot E, Butcher NJ, et al. Obesity in adults with 22q11.2 deletion syndrome[J]. Genet Med, 2017, 19(2):204-208. |
[24] | Trainor PA, Andrews BT. Facial dysostoses: etiology, pathogenesis and management[J]. Am J Med Genet C Semin Med Genet, 2013, 163C(4):283-294. |
[25] | Terrazas K, Dixon J, Trainor PA , et al. Rare syndro-mes of the head and face: mandibulofacial and acrofacial dysostoses[J]. Wiley Interdiscip Rev Dev Biol, 2017, 6(3): 10.1002/wdev.263. |
[26] |
Dauwerse JG, Dixon J, Seland S, et al. Mutations in genes encoding subunits of RNA polymerasesⅠandⅢcause Treacher Collins syndrome[J]. Nat Genet, 2011, 43(1):20-22.
doi: 10.1038/ng.724 |
[27] |
Schaefer E, Collet C, Genevieve D, et al. Autosomal recessive POLR1D mutation with decrease of TC-OF1 mRNA is responsible for Treacher Collins syndrome[J]. Genet Med, 2014, 16(9):720-724.
doi: 10.1038/gim.2014.12 pmid: 24603435 |
[28] | Noack Watt KE, Achilleos A, Neben CL, et al. The roles of RNA polymeraseⅠandⅢsubunits Polr1c and Polr1d in craniofacial development and in zebrafish models of treacher collins syndrome[J]. PLoS Genet, 2016, 12(7):e1006187. |
[29] | Ross AP, Zarbalis KS. The emerging roles of ribosome biogenesis in craniofacial development[J]. Front Physiol, 2014, 5:26. |
[30] | Sakai D, Dixon J, Dixon MJ, et al. Mammalian neurogenesis requires Treacle-Plk1 for precise control of spindle orientation, mitotic progression, and main-tenance of neural progenitor cells[J]. PLoS Genet, 2012, 8(3):e1002566. |
[31] | de Peralta MS, Mouguelar VS, Sdrigotti MA, et al. Cnbp ameliorates Treacher Collins Syndrome craniofacial anomalies through a pathway that involves redox-responsive genes[J]. Cell Death Dis, 2016, 7(10):e2397. |
[32] |
Kwong EML, Ho JCH, Lau MCC, et al. Restoration of polr1c in early embryogenesis rescues the type 3 treacher collins syndrome facial malformation phenotype in zebrafish[J]. Am J Pathol, 2018, 188(2):336-342.
doi: 10.1016/j.ajpath.2017.10.004 |
[33] |
Wilkie AO, Slaney SF, Oldridge M, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome[J]. Nat Genet, 1995, 9(2):165-172.
pmid: 7719344 |
[34] |
Goriely A, Wilkie AO. Paternal age effect mutations and selfish spermatogonial selection: causes and con-sequences for human disease[J]. Am J Hum Genet, 2012, 90(2):175-200.
doi: 10.1016/j.ajhg.2011.12.017 pmid: 22325359 |
[35] |
Arnheim N, Calabrese P. Germline stem cell competition, mutation hot spots, genetic disorders, and ol-der fathers[J]. Annu Rev Genomics Hum Genet, 2016, 17:219-243.
doi: 10.1146/annurev-genom-083115-022656 pmid: 27070266 |
[36] |
Ferreira LC, Dantas Junior JH. Report of a father with congenital bBilateral absence of the vas defe-rens fathering a child with Beare-Stevenson syndrome[J]. Front Genet, 2020, 11:104.
doi: 10.3389/fgene.2020.00104 |
[37] |
Maher GJ, Ralph HK, Ding ZH, et al. Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes[J]. Genome Res, 2018, 28(12):1779-1790.
doi: 10.1101/gr.239186.118 |
[38] |
Martin LA, Assif N, Gilbert M, et al. Enhanced fitness of adult spermatogonial stem cells bearing a paternal age-associated FGFR2 mutation[J]. Stem Cell Reports, 2014, 3(2):219-226.
doi: 10.1016/j.stemcr.2014.06.007 pmid: 25254335 |
[39] |
Yoon SR, Choi SK, Eboreime J, et al. Age-dependent germline mosaicism of the most common noo-nan syndrome mutation shows the signature of germ-line selection[J]. Am J Hum Genet, 2013, 92(6):917-926.
doi: 10.1016/j.ajhg.2013.05.001 |
[40] |
Park WJ, Theda C, Maestri NE, et al. Analysis of phenotypic features and FGFR2 mutations in Apert syndrome[J]. Am J Hum Genet, 1995, 57(2):321-328.
pmid: 7668257 |
[41] | Chen P, Zhang L, Weng TJ, et al. A Ser252Trp mutation in fibroblast growth factor receptor 2 (FGFR2) mimicking human Apert syndrome reveals an essential role for FGF signaling in the regulation of endochondral bone formation[J]. PLoS One, 2014, 9(1):e87311. |
[42] |
Xu W, Luo FT, Wang Q, et al. Inducible activation of FGFR2 in adult mice promotes bone formation after bone marrow ablation[J]. J Bone Miner Res, 2017, 32(11):2194-2206.
doi: 10.1002/jbmr.3204 |
[43] |
Suzuki H, Suda N, Shiga M, et al. Apert syndrome mutant FGFR2 and its soluble form reciprocally alter osteogenesis of primary calvarial osteoblasts[J]. J Cell Physiol, 2012, 227(9):3267-3277.
doi: 10.1002/jcp.24021 |
[44] |
Min Swe NM, Kobayashi Y, Kamimoto H, et al. A-berrantly activated Wnt/β-catenin pathway co-receptors LRP5 and LRP6 regulate osteoblast differentiation in the developing coronal sutures of an Apert syndrome (Fgfr2S252W/+) mouse model[J]. Dev Dyn, 2021, 250(3):465-476.
doi: 10.1002/dvdy.v250.3 |
[45] |
Azoury SC, Reddy S, Shukla V, et al. Fibroblast growth factor receptor 2 (FGFR2) mutation related syndromic craniosynostosis[J]. Int J Biol Sci, 2017, 13(12):1479-1488.
doi: 10.7150/ijbs.22373 pmid: 29230096 |
[46] |
Carter EP, Fearon AE, Grose RP. Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction[J]. Trends Cell Biol, 2015, 25(4):221-233.
doi: 10.1016/j.tcb.2014.11.003 |
[47] |
Morita J, Nakamura M, Kobayashi Y, et al. Soluble form of FGFR2 with S252W partially prevents craniosynostosis of the apert mouse model[J]. Dev Dyn, 2014, 243(4):560-567.
doi: 10.1002/dvdy.v243.4 |
[48] |
Wang Y, Zhou X, Oberoi K, et al. p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Bea-re-Stevenson mice[J]. J Clin Invest, 2012, 122(6):2153-2164.
doi: 10.1172/JCI62644 |
[49] |
Yokota M, Kobayashi Y, Morita J, et al. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis[J]. PLoS One, 2014, 9(7):e101693.
doi: 10.1371/journal.pone.0101693 |
[50] |
Kim B, Shin H, Kim W, et al. PIN1 attenuation improves midface hypoplasia in a mouse model of a-pert syndrome[J]. J Dent Res, 2020, 99(2):223-232.
doi: 10.1177/0022034519893656 pmid: 31869252 |
[51] |
Wójcicki P, Koźlik MJ, Wójcicka K. Genetic factors in selected complex congenital malformations with cleft defect[J]. Adv Clin Exp Med, 2016, 25(5):977-987.
doi: 10.17219/acem/61911 pmid: 28028964 |
[52] |
Marwaha M, Nanda KD. Ectrodactyly, ectodermal dysplasia, cleft lip, and palate (EEC syndrome)[J]. Contemp Clin Dent, 2012, 3(2):205-208.
doi: 10.4103/0976-237X.96831 |
[53] | Shivaprakash PK, Joshi HV, Noorani H, et al. Ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome: a case report of “Incomplete syndrome”[J]. Contemp Clin Dent, 2012, 3(Suppl 1):S115-S117. |
[54] |
Barbaro V, Confalonieri L, Vallini I, et al. Development of an allele-specific real-time PCR assay for discrimination and quantification of p63 R279H mutation in EEC syndrome[J]. J Mol Diagn, 2012, 14(1):38-45.
doi: 10.1016/j.jmoldx.2011.07.008 |
[55] |
Qu JQ, Tanis SEJ, Smits JPH, et al. Mutant p63 affects epidermal cell identity through rewiring the enhancer landscape[J]. Cell Rep, 2018, 25(12): 3490-3503.e4.
doi: 10.1016/j.celrep.2018.11.039 |
[56] |
Qu JQ, Yi GQ, Zhou HQ. P63 cooperates with CT-CF to modulate chromatin architecture in skin keratinocytes[J]. Epigenetics Chromatin, 2019, 12(1):31.
doi: 10.1186/s13072-019-0280-y |
[57] |
Shen JF, van den Bogaard EH, Kouwenhoven EN, et al. APR-246/Prima-1(MET) rescues epidermal differentiation in skin keratinocytes derived from EEC syndrome patients with p63 mutations[J]. Proc Natl Acad Sci U S A, 2013, 110(6):2157-2162.
doi: 10.1073/pnas.1201993110 |
[58] | Novelli F, Lena AM, Panatta E, et al. Allele-specific silencing of EEC p63 mutant R304W restores p63 transcriptional activity[J]. Cell Death Dis, 2016, 7:e2227. |
[59] |
Barbaro V, Nasti AA, Del Vecchio C, et al. Correction of mutant p63 in EEC syndrome using siRNA mediated allele-specific silencing restores defective stem cell function[J]. Stem Cells, 2016, 34(6):1588-1600.
doi: 10.1002/stem.v34.6 |
[60] |
de Lima RL, Hoper SA, Ghassibe M, et al. Prevalence and nonrandom distribution of exonic mutations in interferon regulatory factor 6 in 307 families with Van der Woude syndrome and 37 families with popliteal pterygium syndrome[J]. Genet Med, 2009, 11(4):241-247.
doi: 10.1097/GIM.0b013e318197a49a |
[1] | 夏溦瑶,罗岩坤,贾仲林. Pierre Robin序列征的精准诊断和遗传病因学研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 287-292. |
[2] | 雷彬,陈柯. 牙本质发育不良Ⅰ型及其分型治疗[J]. 国际口腔医学杂志, 2022, 49(3): 332-336. |
[3] | 侯亚丽,马利. 亚洲人群干扰素调节因子6基因多态性与非综合征型唇腭裂相关性研究的Meta分析[J]. 国际口腔医学杂志, 2020, 47(4): 397-405. |
[4] | 徐仰龙,杨德琴. 变形链球菌粘附调节基因研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): -. |
[5] | 黄永清,石冰,. 干扰素调节因子-6基因多态性与非综合征型唇腭裂的相关性研究[J]. 国际口腔医学杂志, 2007, 34(02): 119-121. |
[6] | 李志萍 孙宏晨 欧阳喈. 非综合征型唇腭裂的遗传学研究进展[J]. 国际口腔医学杂志, 2003, 30(05): 365-367. |
[7] | 王晓方 刘嘉利 肖明振 史俊南 吴补领 孔祥银 . Van Der Woude综合征[J]. 国际口腔医学杂志, 2003, 30(02): 127-128. |
|